Voir la notice de l'article provenant de la source Numdam
In this paper, we address the issue of estimating the parameters of general multivariate copulas, that is, copulas whose partial derivatives may not exist. To this aim, we consider a weighted least-squares estimator based on dependence coefficients, and establish its consistency and asymptotic normality. The estimator’s performance on finite samples is illustrated on simulations and a real dataset.
Mazo, Gildas 1 ; Girard, Stéphane 1 ; Forbes, Florence 1
@article{PS_2015__19__746_0, author = {Mazo, Gildas and Girard, St\'ephane and Forbes, Florence}, title = {Weighted least-squares inference for multivariate copulas based on dependence coefficients}, journal = {ESAIM: Probability and Statistics}, pages = {746--765}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2015014}, zbl = {1392.62157}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015014/} }
TY - JOUR AU - Mazo, Gildas AU - Girard, Stéphane AU - Forbes, Florence TI - Weighted least-squares inference for multivariate copulas based on dependence coefficients JO - ESAIM: Probability and Statistics PY - 2015 SP - 746 EP - 765 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015014/ DO - 10.1051/ps/2015014 LA - en ID - PS_2015__19__746_0 ER -
%0 Journal Article %A Mazo, Gildas %A Girard, Stéphane %A Forbes, Florence %T Weighted least-squares inference for multivariate copulas based on dependence coefficients %J ESAIM: Probability and Statistics %D 2015 %P 746-765 %V 19 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015014/ %R 10.1051/ps/2015014 %G en %F PS_2015__19__746_0
Mazo, Gildas; Girard, Stéphane; Forbes, Florence. Weighted least-squares inference for multivariate copulas based on dependence coefficients. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 746-765. doi: 10.1051/ps/2015014
Cité par Sources :