Voir la notice de l'article provenant de la source Numdam
In this paper, we address the issue of estimating the parameters of general multivariate copulas, that is, copulas whose partial derivatives may not exist. To this aim, we consider a weighted least-squares estimator based on dependence coefficients, and establish its consistency and asymptotic normality. The estimator’s performance on finite samples is illustrated on simulations and a real dataset.
Mazo, Gildas 1 ; Girard, Stéphane 1 ; Forbes, Florence 1
@article{PS_2015__19__746_0, author = {Mazo, Gildas and Girard, St\'ephane and Forbes, Florence}, title = {Weighted least-squares inference for multivariate copulas based on dependence coefficients}, journal = {ESAIM: Probability and Statistics}, pages = {746--765}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2015014}, zbl = {1392.62157}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015014/} }
TY - JOUR AU - Mazo, Gildas AU - Girard, Stéphane AU - Forbes, Florence TI - Weighted least-squares inference for multivariate copulas based on dependence coefficients JO - ESAIM: Probability and Statistics PY - 2015 SP - 746 EP - 765 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015014/ DO - 10.1051/ps/2015014 LA - en ID - PS_2015__19__746_0 ER -
%0 Journal Article %A Mazo, Gildas %A Girard, Stéphane %A Forbes, Florence %T Weighted least-squares inference for multivariate copulas based on dependence coefficients %J ESAIM: Probability and Statistics %D 2015 %P 746-765 %V 19 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015014/ %R 10.1051/ps/2015014 %G en %F PS_2015__19__746_0
Mazo, Gildas; Girard, Stéphane; Forbes, Florence. Weighted least-squares inference for multivariate copulas based on dependence coefficients. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 746-765. doi : 10.1051/ps/2015014. http://geodesic.mathdoc.fr/articles/10.1051/ps/2015014/
Copula goodness-of-fit testing: an overview and power comparison. Eur. J. Finance 15 (2009) 675–701.
,New estimators of the Pickands dependence function and a test for extreme-value dependence. Ann. Statist. 39 (2011) 1963–2006. | Zbl
, , and ,When uniform weak convergence fails: Empirical processes for dependence functions and residuals via epi- and hypographs. Ann. Stat. 42 (2014) 1598–1634. | Zbl
, and ,A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84 (1997) 567–577. | Zbl
, and ,S. Coles, An Introduction to Statistical Modeling of Extreme Values. Springer (2001). | Zbl
A continuous general multivariate distribution and its properties. Commun. Stat. – Theory Methods 10 (1981) 339–353. | Zbl
and ,On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Stat. Probab. Lett. 12 (1991) 429–439. | Zbl
,On the construction of multivariate extreme value models via copulas. Environmetrics 21 (2010) 143–161.
and ,F. Durante and C. Sempi, Copula Theory: An Introduction. In Copula Theory and Its Applications. Springer (2010) 3–31.
An M-estimator for tail dependence in arbitrary dimensions. Ann. Stat. 40 (2012) 1764–1793. | Zbl
, and ,Nonparametric estimation of the tail-dependence coefficient. REVSTAT–Stat. J. 11 (2013) 1–16. | Zbl
,Remarques au sujet de la note précédente. C. R. Acad. Sci. Paris Sér. I Math. 246 (1958) 2719–2720. | Zbl
,Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 88 (1993) 1034–1043. | Zbl
and ,Test of independence and randomness based on the empirical copula process. Test 13 (2004) 335–369. | Zbl
and ,Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. 12 (2007) 347–368.
and ,Rank-based inference for bivariate extreme-value copulas. Ann. Stat. 37 (2009) 2990–3022. | Zbl
and ,A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543–552. | Zbl
, and ,Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics 44 (2009) 199–213. | Zbl
, and ,Estimators based on Kendall’s tau in multivariate copula models. Australian & New Zealand J. Stat. 53 (2011) 157–177. | Zbl
, and ,G. Gudendorf and J. Segers, Extreme-value Copulas. In Copula Theory and Its Applications Springer (2010) 127–145.
Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 6 (2000) 835–844. | Zbl
and ,Large sample properties of generalized method of moments estimators. Econometrica 50 (1982) 1029–1054. | Zbl
,A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19 (1948) 293–325. | Zbl
,H. Joe, Multivariate Models and Dependence Concepts. Chapman & Hall/CRC, Boca Raton, FL (2001). | Zbl
Copula structure analysis. J. R. Statist. Soc. B 71 (2009) 737–753. | Zbl
and ,A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Stat. Comput. 21 (2011) 17–30. | Zbl
and ,Factor copula models for multivariate data. J. Multivariate Anal. 120 (2013) 85–101. | Zbl
and ,G. Mazo, S. Girard and F. Forbes, A flexible and tractable class of one-factor copulas. To appear in Stat. Comput. (2015) . | DOI
R.B. Nelsen, An Introduction to Copulas. Springer (2006). | Zbl
Kendall distribution functions. Stat. Probab. Lett. 65 (2003) 263–268. | Zbl
, , and ,Simulated method of moments estimation for copula-based multivariate models. J. Am. Stat. Assoc. 108 (2013) 689–700. | Zbl
and ,Multivariate Extreme Value Distributions. Proc. of the 43rd Session of the International Statistical Institute 2 (1981) 859–878. | Zbl
,J.R. Schott, Matrix analysis for statistics. Wiley (2005). | Zbl
Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18 (2012) 764–782. | Zbl
,Semiparametric estimation in copula models. The Canadian Journal of Statistics / La Revue Canadienne de Statistique 33 (2005) 357–375. | Zbl
,A.W. Van der Vaart, Asymptotic Statistics. Cambridge University Press 3 (2000). | Zbl
Cité par Sources :