Randomized pick-freeze for sparse Sobol indices estimation in high dimension
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 725-745

Voir la notice de l'article provenant de la source Numdam

This article investigates selection of variables in high-dimension from a non-parametric regression model. In many concrete situations, we are concerned with estimating a non-parametric regression function f that may depend on a large number p of inputs variables. Unlike standard procedures, we do not assume that f belongs to a class of regular functions (Hölder, Sobolev, ...), yet we assume that f is a square-integrable function with respect to a known product measure. Furthermore, observe that, in some situations, only a small number s of the coordinates actually affects f in an additive manner. In this context, we prove that, with only 𝒪(slogp) random evaluations of f, one can find which are the relevant input variables with overwhelming probability. Our proposed method is an unconstrained 1 -minimization procedure based on the Sobol’s method. One step of this procedure relies on support recovery using 1 -minimization and thresholding. More precisely, we use a thresholded-LASSO to faithfully uncover the significant input variables. In this frame, we prove that one can relax the mutual incoherence property (known to require 𝒪(s 2 logp) observations) and still ensure faithful recovery from 𝒪(s α logp) observations for any 1α2.

DOI : 10.1051/ps/2015013
Classification : 62G08, 62G35, 65H10, 93A30, 93B35
Keywords: Sensitivity analysis, Sobol indices, high-dimensional statistics, LASSO, Monte-Carlo method

Castro, Yohann de 1 ; Janon, Alexandre 2

1 UniversitéParis-Sud, Laboratoire de Mathématiques d’Orsay, Bâtiment 425, Université Paris-Sud, 91405 Orsay, France
2 UniversitéParis-Sud, Laboratoire de Mathématiques d’Orsay, Bâtiment 425, Université Paris-Sud, 91405 Orsay, France
@article{PS_2015__19__725_0,
     author = {Castro, Yohann de and Janon, Alexandre},
     title = {Randomized pick-freeze for sparse {Sobol} indices estimation in high dimension},
     journal = {ESAIM: Probability and Statistics},
     pages = {725--745},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2015013},
     zbl = {1392.62111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015013/}
}
TY  - JOUR
AU  - Castro, Yohann de
AU  - Janon, Alexandre
TI  - Randomized pick-freeze for sparse Sobol indices estimation in high dimension
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 725
EP  - 745
VL  - 19
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015013/
DO  - 10.1051/ps/2015013
LA  - en
ID  - PS_2015__19__725_0
ER  - 
%0 Journal Article
%A Castro, Yohann de
%A Janon, Alexandre
%T Randomized pick-freeze for sparse Sobol indices estimation in high dimension
%J ESAIM: Probability and Statistics
%D 2015
%P 725-745
%V 19
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015013/
%R 10.1051/ps/2015013
%G en
%F PS_2015__19__725_0
Castro, Yohann de; Janon, Alexandre. Randomized pick-freeze for sparse Sobol indices estimation in high dimension. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 725-745. doi: 10.1051/ps/2015013

Cité par Sources :