Gaussian and non-Gaussian processes of zero power variation
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 414-439
Cet article a éte moissonné depuis la source Numdam
We consider a class of stochastic processes defined by for , where is a square-integrable continuous martingale and is a deterministic kernel. Let be an odd integer. Under the assumption that the quadratic variation of is differentiable with finite, it is shown that the th power variation
Reçu le :
DOI : 10.1051/ps/2014031
DOI : 10.1051/ps/2014031
Classification :
60G07, 60G15, 60G48, 60H05
Keywords: Power variation, martingale, calculusvia regularization, Gaussian processes, generalized Stratonovich integral, non-Gaussian processes
Keywords: Power variation, martingale, calculusvia regularization, Gaussian processes, generalized Stratonovich integral, non-Gaussian processes
Affiliations des auteurs :
Russo, Francesco 1, 2 ; Viens, Frederi 3
@article{PS_2015__19__414_0,
author = {Russo, Francesco and Viens, Frederi},
title = {Gaussian and {non-Gaussian} processes of zero power variation},
journal = {ESAIM: Probability and Statistics},
pages = {414--439},
year = {2015},
publisher = {EDP-Sciences},
volume = {19},
doi = {10.1051/ps/2014031},
zbl = {1333.60114},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2014031/}
}
TY - JOUR AU - Russo, Francesco AU - Viens, Frederi TI - Gaussian and non-Gaussian processes of zero power variation JO - ESAIM: Probability and Statistics PY - 2015 SP - 414 EP - 439 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2014031/ DO - 10.1051/ps/2014031 LA - en ID - PS_2015__19__414_0 ER -
%0 Journal Article %A Russo, Francesco %A Viens, Frederi %T Gaussian and non-Gaussian processes of zero power variation %J ESAIM: Probability and Statistics %D 2015 %P 414-439 %V 19 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2014031/ %R 10.1051/ps/2014031 %G en %F PS_2015__19__414_0
Russo, Francesco; Viens, Frederi. Gaussian and non-Gaussian processes of zero power variation. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 414-439. doi: 10.1051/ps/2014031
Cité par Sources :
