Voir la notice de l'article provenant de la source Numdam
We study the asymptotic of the spectral distribution for large empirical covariance matrices composed of independent lognormal Multifractal Random Walk processes. The asymptotic is taken as the observation lag shrinks to . In this setting, we show that there exists a limiting spectral distribution whose Stieltjes transform is uniquely characterized by equations which we specify. We also illustrate our results by numerical simulations.
Allez, Romain 1, 2 ; Rhodes, Rémi 1, 2 ; Vargas, Vincent 1, 2
@article{PS_2015__19__327_0, author = {Allez, Romain and Rhodes, R\'emi and Vargas, Vincent}, title = {Convergence of the spectrum of empirical covariance matrices for independent {MRW} processes}, journal = {ESAIM: Probability and Statistics}, pages = {327--360}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2014028}, zbl = {1331.60015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2014028/} }
TY - JOUR AU - Allez, Romain AU - Rhodes, Rémi AU - Vargas, Vincent TI - Convergence of the spectrum of empirical covariance matrices for independent MRW processes JO - ESAIM: Probability and Statistics PY - 2015 SP - 327 EP - 360 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2014028/ DO - 10.1051/ps/2014028 LA - en ID - PS_2015__19__327_0 ER -
%0 Journal Article %A Allez, Romain %A Rhodes, Rémi %A Vargas, Vincent %T Convergence of the spectrum of empirical covariance matrices for independent MRW processes %J ESAIM: Probability and Statistics %D 2015 %P 327-360 %V 19 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2014028/ %R 10.1051/ps/2014028 %G en %F PS_2015__19__327_0
Allez, Romain; Rhodes, Rémi; Vargas, Vincent. Convergence of the spectrum of empirical covariance matrices for independent MRW processes. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 327-360. doi: 10.1051/ps/2014028
Cité par Sources :