Voir la notice de l'article provenant de la source Numdam
Let be a real random variable and be a Poisson point process. We investigate rates of convergence of a nonparametric estimate of the regression function r(x) = (Y|X = x), based on independent copies of the pair . The estimator is constructed using a Wiener–Itô decomposition of . In this infinite-dimensional setting, we first obtain a finite sample bound on the expected squared difference (. Then, under a condition ensuring that the model is genuinely infinite-dimensional, we obtain the exact rate of convergence of ln(.
Cadre, Benoît 1 ; Truquet, Lionel 2
@article{PS_2015__19__251_0, author = {Cadre, Beno{\^\i}t and Truquet, Lionel}, title = {Nonparametric regression estimation onto a {Poisson} point process covariate}, journal = {ESAIM: Probability and Statistics}, pages = {251--267}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2014023}, mrnumber = {3412645}, zbl = {1392.62109}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2014023/} }
TY - JOUR AU - Cadre, Benoît AU - Truquet, Lionel TI - Nonparametric regression estimation onto a Poisson point process covariate JO - ESAIM: Probability and Statistics PY - 2015 SP - 251 EP - 267 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2014023/ DO - 10.1051/ps/2014023 LA - en ID - PS_2015__19__251_0 ER -
%0 Journal Article %A Cadre, Benoît %A Truquet, Lionel %T Nonparametric regression estimation onto a Poisson point process covariate %J ESAIM: Probability and Statistics %D 2015 %P 251-267 %V 19 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2014023/ %R 10.1051/ps/2014023 %G en %F PS_2015__19__251_0
Cadre, Benoît; Truquet, Lionel. Nonparametric regression estimation onto a Poisson point process covariate. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 251-267. doi: 10.1051/ps/2014023
Cité par Sources :