Voir la notice de l'article provenant de la source Numdam
We introduce operator scaled Wiener bridges by incorporating a matrix scaling in the drift part of the SDE of a multidimensional Wiener bridge. A sufficient condition for the bridge property of the SDE solution is derived in terms of the eigenvalues of the scaling matrix. We analyze the asymptotic behavior of the bridges and briefly discuss the question whether the scaling matrix determines uniquely the law of the corresponding bridge.
Barczy, Mátyás 1 ; Kern, Peter 2 ; Krause, Vincent 3
@article{PS_2015__19__100_0, author = {Barczy, M\'aty\'as and Kern, Peter and Krause, Vincent}, title = {Operator scaled {Wiener} bridges}, journal = {ESAIM: Probability and Statistics}, pages = {100--114}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2014016}, mrnumber = {3374871}, zbl = {1333.60116}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2014016/} }
TY - JOUR AU - Barczy, Mátyás AU - Kern, Peter AU - Krause, Vincent TI - Operator scaled Wiener bridges JO - ESAIM: Probability and Statistics PY - 2015 SP - 100 EP - 114 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2014016/ DO - 10.1051/ps/2014016 LA - en ID - PS_2015__19__100_0 ER -
Barczy, Mátyás; Kern, Peter; Krause, Vincent. Operator scaled Wiener bridges. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 100-114. doi: 10.1051/ps/2014016
Cité par Sources :