Voir la notice de l'article provenant de la source Numdam
In this paper we study some properties of the density for the law of the solution to a generalized multidimensional fractional kinetic equation driven by a Gaussian noise, white in time and correlated in space. The diffusion operator is the composition between the Bessel and Riesz potentials with any fractional parameters. We also establish Varadhan’s estimates for the solution to the equation obtained by perturbing the noise.
Márquez-Carreras, David 1
@article{PS_2015__19__81_0, author = {M\'arquez-Carreras, David}, title = {Small stochastic perturbations in a general fractional kinetic equation}, journal = {ESAIM: Probability and Statistics}, pages = {81--99}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2014015}, mrnumber = {3374870}, zbl = {1334.60112}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2014015/} }
TY - JOUR AU - Márquez-Carreras, David TI - Small stochastic perturbations in a general fractional kinetic equation JO - ESAIM: Probability and Statistics PY - 2015 SP - 81 EP - 99 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2014015/ DO - 10.1051/ps/2014015 LA - en ID - PS_2015__19__81_0 ER -
%0 Journal Article %A Márquez-Carreras, David %T Small stochastic perturbations in a general fractional kinetic equation %J ESAIM: Probability and Statistics %D 2015 %P 81-99 %V 19 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2014015/ %R 10.1051/ps/2014015 %G en %F PS_2015__19__81_0
Márquez-Carreras, David. Small stochastic perturbations in a general fractional kinetic equation. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 81-99. doi: 10.1051/ps/2014015
Cité par Sources :