Voir la notice de l'article provenant de la source Numdam
We consider dependence coefficients for stationary Markov chains. We emphasize on some equivalencies for reversible Markov chains. We improve some known results and provide a necessary condition for Markov chains based on Archimedean copulas to be exponential ρ-mixing. We analyse the example of the Mardia and Frechet copula families using small sets.
@article{PS_2014__18__570_0, author = {Longla, Martial}, title = {On dependence structure of copula-based {Markov} chains}, journal = {ESAIM: Probability and Statistics}, pages = {570--583}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013052}, zbl = {1308.60087}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2013052/} }
TY - JOUR AU - Longla, Martial TI - On dependence structure of copula-based Markov chains JO - ESAIM: Probability and Statistics PY - 2014 SP - 570 EP - 583 VL - 18 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2013052/ DO - 10.1051/ps/2013052 LA - en ID - PS_2014__18__570_0 ER -
Longla, Martial. On dependence structure of copula-based Markov chains. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 570-583. doi : 10.1051/ps/2013052. http://geodesic.mathdoc.fr/articles/10.1051/ps/2013052/
[1] Archimedean copulas and temporal dependence. Econ. Theory 28 (2012) 1165-1185. | Zbl | MR
,[2] Copulas and Temporal Dependence. Econometrica 78 (2010) 395-410. | Zbl | MR
,[3] Introduction to strong mixing conditions. Vol. 1, 2. Kendrick press (2007). | Zbl | MR
,[4] Chaos: A Statistical Perspective. Springer, New York (2001). | Zbl | MR
and ,[5] The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincaré, Section B, Tome 30 (1994) 63-82. | Zbl | MR | mathdoc-id
, and ,[6] Some Aspects of Modeling Dependence in Copula-based Markov chains. J. Multiv. Anal. 111 (2012) 234-240. | Zbl | MR
and ,[7] Remarks on the speed of convergence of mixing coefficients and applications. Stat. Probab. Lett. 82 (2013) 2439-2445. | MR
,[8] An introduction to copulas. 2nd edition. Springer, New York (2006). | Zbl | MR
,Cité par Sources :