An application of multivariate total positivity to peacocks
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 514-540

Voir la notice de l'article provenant de la source Numdam

We use multivariate total positivity theory to exhibit new families of peacocks. As the authors of [F. Hirsch, C. Profeta, B. Roynette and M. Yor, Peacocks and associated martingales vol. 3. Bocconi-Springer (2011)], our guiding example is the result of Carr-Ewald-Xiao [P. Carr, C.-O. Ewald and Y. Xiao, Finance Res. Lett. 5 (2008) 162-171]. We shall introduce the notion of strong conditional monotonicity. This concept is strictly more restrictive than the conditional monotonicity as defined in [F. Hirsch, C. Profeta, B. Roynette and M. Yor, Peacocks and associated martingales, vol. 3. Bocconi-Springer (2011)] (see also [R.H. Berk, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42 (1978) 303-307], [A.M. Bogso, C. Profeta and B. Roynette, Lect. Notes Math. Springer, Berlin (2012) 281-315.] and [M. Shaked and J.G. Shanthikumar, Probab. Math. Statistics. Academic Press, Boston (1994)].). There are many random vectors which are strongly conditionally monotone (SCM). Indeed, we shall prove that multivariate totally positive of order 2 (MTP2) random vectors are SCM. As a consequence, stochastic processes with MTP2 finite-dimensional marginals are SCM. This family includes processes with independent and log-concave increments, and one-dimensional diffusions which have absolutely continuous transition kernels.

DOI : 10.1051/ps/2013049
Classification : 60J25, 32F17, 60G44, 60E15
Keywords: convex order, peacocks, total positivity of order 2 (TP2), multivariate total positivity of order 2 (MTP2), markov property, strong conditional monotonicity
@article{PS_2014__18__514_0,
     author = {Bogso, Antoine Marie},
     title = {An application of multivariate total positivity to peacocks},
     journal = {ESAIM: Probability and Statistics},
     pages = {514--540},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2013049/}
}
TY  - JOUR
AU  - Bogso, Antoine Marie
TI  - An application of multivariate total positivity to peacocks
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 514
EP  - 540
VL  - 18
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2013049/
DO  - 10.1051/ps/2013049
LA  - en
ID  - PS_2014__18__514_0
ER  - 
%0 Journal Article
%A Bogso, Antoine Marie
%T An application of multivariate total positivity to peacocks
%J ESAIM: Probability and Statistics
%D 2014
%P 514-540
%V 18
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2013049/
%R 10.1051/ps/2013049
%G en
%F PS_2014__18__514_0
Bogso, Antoine Marie. An application of multivariate total positivity to peacocks. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 514-540. doi: 10.1051/ps/2013049

Cité par Sources :