Recursive bias estimation for multivariate regression smoothers
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 483-502

Voir la notice de l'article provenant de la source Numdam

This paper presents a practical and simple fully nonparametric multivariate smoothing procedure that adapts to the underlying smoothness of the true regression function. Our estimator is easily computed by successive application of existing base smoothers (without the need of selecting an optimal smoothing parameter), such as thin-plate spline or kernel smoothers. The resulting smoother has better out of sample predictive capabilities than the underlying base smoother, or competing structurally constrained models (MARS, GAM) for small dimension (3 ≤ d ≤ 7) and moderate sample size n ≤ 1000. Moreover our estimator is still useful when d > 10 and to our knowledge, no other adaptive fully nonparametric regression estimator is available without constrained assumption such as additivity for example. On a real example, the Boston Housing Data, our method reduces the out of sample prediction error by 20%. An R package ibr, available at CRAN, implements the proposed multivariate nonparametric method in R.

DOI : 10.1051/ps/2013046
Classification : 62G07, 62G20
Keywords: nonparametric regression, smoother, kernel, thin-plate splines, stopping rules
@article{PS_2014__18__483_0,
     author = {Cornillon, Pierre-Andr\'e and Hengartner, N. W. and Matzner-L{\o}ber, E.},
     title = {Recursive bias estimation for multivariate regression smoothers},
     journal = {ESAIM: Probability and Statistics},
     pages = {483--502},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2013046/}
}
TY  - JOUR
AU  - Cornillon, Pierre-André
AU  - Hengartner, N. W.
AU  - Matzner-Løber, E.
TI  - Recursive bias estimation for multivariate regression smoothers
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 483
EP  - 502
VL  - 18
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2013046/
DO  - 10.1051/ps/2013046
LA  - en
ID  - PS_2014__18__483_0
ER  - 
%0 Journal Article
%A Cornillon, Pierre-André
%A Hengartner, N. W.
%A Matzner-Løber, E.
%T Recursive bias estimation for multivariate regression smoothers
%J ESAIM: Probability and Statistics
%D 2014
%P 483-502
%V 18
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2013046/
%R 10.1051/ps/2013046
%G en
%F PS_2014__18__483_0
Cornillon, Pierre-André; Hengartner, N. W.; Matzner-Løber, E. Recursive bias estimation for multivariate regression smoothers. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 483-502. doi: 10.1051/ps/2013046

Cité par Sources :