Testing randomness of spatial point patterns with the Ripley statistic
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 767-788

Voir la notice de l'article provenant de la source Numdam

Aggregation patterns are often visually detected in sets of location data. These clusters may be the result of interesting dynamics or the effect of pure randomness. We build an asymptotically Gaussian test for the hypothesis of randomness corresponding to a homogeneous Poisson point process. We first compute the exact first and second moment of the Ripley K-statistic under the homogeneous Poisson point process model. Then we prove the asymptotic normality of a vector of such statistics for different scales and compute its covariance matrix. From these results, we derive a test statistic that is chi-square distributed. By a Monte-Carlo study, we check that the test is numerically tractable even for large data sets and also correct when only a hundred of points are observed.

DOI : 10.1051/ps/2012027
Classification : 60G55, 60F05, 62F03
Keywords: central limit theorem, goodness-of-fit test, Höffding decomposition, K-function, point pattern, Poisson process, U-statistic
@article{PS_2013__17__767_0,
     author = {Lang, Gabriel and Marcon, Eric},
     title = {Testing randomness of spatial point patterns with the {Ripley} statistic},
     journal = {ESAIM: Probability and Statistics},
     pages = {767--788},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2012027},
     mrnumber = {3126161},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2012027/}
}
TY  - JOUR
AU  - Lang, Gabriel
AU  - Marcon, Eric
TI  - Testing randomness of spatial point patterns with the Ripley statistic
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 767
EP  - 788
VL  - 17
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2012027/
DO  - 10.1051/ps/2012027
LA  - en
ID  - PS_2013__17__767_0
ER  - 
%0 Journal Article
%A Lang, Gabriel
%A Marcon, Eric
%T Testing randomness of spatial point patterns with the Ripley statistic
%J ESAIM: Probability and Statistics
%D 2013
%P 767-788
%V 17
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2012027/
%R 10.1051/ps/2012027
%G en
%F PS_2013__17__767_0
Lang, Gabriel; Marcon, Eric. Testing randomness of spatial point patterns with the Ripley statistic. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 767-788. doi: 10.1051/ps/2012027

Cité par Sources :