Necessary and sufficient condition for the existence of a Fréchet mean on the circle
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 635-649

Voir la notice de l'article provenant de la source Numdam

Let ( 𝕊 1 ,d 𝕊 1 S 1 , d S 1 ) be the unit circle in ℝ2 endowed with the arclength distance. We give a sufficient and necessary condition for a general probability measure μ to admit a well defined Fréchet mean on ( 𝕊 1 ,d 𝕊 1 S 1 , d S 1 ). We derive a new sufficient condition of existence P(α, ϕ) with no restriction on the support of the measure. Then, we study the convergence of the empirical Fréchet mean to the Fréchet mean and we give an algorithm to compute it.

DOI : 10.1051/ps/2012015
Classification : 62H11
Keywords: circular data, fréchet mean, uniqueness
@article{PS_2013__17__635_0,
     author = {Charlier, Benjamin},
     title = {Necessary and sufficient condition for the existence of a {Fr\'echet} mean on the circle},
     journal = {ESAIM: Probability and Statistics},
     pages = {635--649},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2012015},
     mrnumber = {3126155},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2012015/}
}
TY  - JOUR
AU  - Charlier, Benjamin
TI  - Necessary and sufficient condition for the existence of a Fréchet mean on the circle
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 635
EP  - 649
VL  - 17
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2012015/
DO  - 10.1051/ps/2012015
LA  - en
ID  - PS_2013__17__635_0
ER  - 
%0 Journal Article
%A Charlier, Benjamin
%T Necessary and sufficient condition for the existence of a Fréchet mean on the circle
%J ESAIM: Probability and Statistics
%D 2013
%P 635-649
%V 17
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2012015/
%R 10.1051/ps/2012015
%G en
%F PS_2013__17__635_0
Charlier, Benjamin. Necessary and sufficient condition for the existence of a Fréchet mean on the circle. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 635-649. doi: 10.1051/ps/2012015

Cité par Sources :