Penalization versus Goldenshluger-Lepski strategies in warped bases regression
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 328-358

Voir la notice de l'article provenant de la source Numdam

This paper deals with the problem of estimating a regression function f, in a random design framework. We build and study two adaptive estimators based on model selection, applied with warped bases. We start with a collection of finite dimensional linear spaces, spanned by orthonormal bases. Instead of expanding directly the target function f on these bases, we rather consider the expansion of h = fG-1, where G is the cumulative distribution function of the design, following Kerkyacharian and Picard [Bernoulli 10 (2004) 1053-1105]. The data-driven selection of the (best) space is done with two strategies: we use both a penalization version of a “warped contrast”, and a model selection device in the spirit of Goldenshluger and Lepski [Ann. Stat. 39 (2011) 1608-1632]. We propose by these methods two functions, ĥl (l = 1, 2), easier to compute than least-squares estimators. We establish nonasymptotic mean-squared integrated risk bounds for the resulting estimators, f ^ l =h ^ l G l = ĥl°G if G is known, or f ^ l =h ^ l G ^ l = ĥl°Ĝ (l = 1,2) otherwise, where Ĝ is the empirical distribution function. We study also adaptive properties, in case the regression function belongs to a Besov or Sobolev space, and compare the theoretical and practical performances of the two selection rules.

DOI : 10.1051/ps/2011165
Classification : 62G05, 62G08
Keywords: adaptive estimator, model selection, nonparametric regression estimation, warped bases
@article{PS_2013__17__328_0,
     author = {Chagny, Ga\"elle},
     title = {Penalization \protect\emph{versus {}Goldenshluger-Lepski} strategies in warped bases regression},
     journal = {ESAIM: Probability and Statistics},
     pages = {328--358},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011165},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011165/}
}
TY  - JOUR
AU  - Chagny, Gaëlle
TI  - Penalization versus Goldenshluger-Lepski strategies in warped bases regression
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 328
EP  - 358
VL  - 17
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2011165/
DO  - 10.1051/ps/2011165
LA  - en
ID  - PS_2013__17__328_0
ER  - 
%0 Journal Article
%A Chagny, Gaëlle
%T Penalization versus Goldenshluger-Lepski strategies in warped bases regression
%J ESAIM: Probability and Statistics
%D 2013
%P 328-358
%V 17
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2011165/
%R 10.1051/ps/2011165
%G en
%F PS_2013__17__328_0
Chagny, Gaëlle. Penalization versus Goldenshluger-Lepski strategies in warped bases regression. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 328-358. doi: 10.1051/ps/2011165

Cité par Sources :