Voir la notice de l'article provenant de la source Numdam
This paper deals with the problem of estimating a regression function f, in a random design framework. We build and study two adaptive estimators based on model selection, applied with warped bases. We start with a collection of finite dimensional linear spaces, spanned by orthonormal bases. Instead of expanding directly the target function f on these bases, we rather consider the expansion of h = f ∘ G-1, where G is the cumulative distribution function of the design, following Kerkyacharian and Picard [Bernoulli 10 (2004) 1053-1105]. The data-driven selection of the (best) space is done with two strategies: we use both a penalization version of a “warped contrast”, and a model selection device in the spirit of Goldenshluger and Lepski [Ann. Stat. 39 (2011) 1608-1632]. We propose by these methods two functions, ĥl (l = 1, 2), easier to compute than least-squares estimators. We establish nonasymptotic mean-squared integrated risk bounds for the resulting estimators, f̂l = ĥl°G if G is known, or f̂l = ĥl°Ĝ (l = 1,2) otherwise, where Ĝ is the empirical distribution function. We study also adaptive properties, in case the regression function belongs to a Besov or Sobolev space, and compare the theoretical and practical performances of the two selection rules.
@article{PS_2013__17__328_0, author = {Chagny, Ga\"elle}, title = {Penalization \protect\emph{versus {}Goldenshluger-Lepski} strategies in warped bases regression}, journal = {ESAIM: Probability and Statistics}, pages = {328--358}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2011165}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011165/} }
TY - JOUR AU - Chagny, Gaëlle TI - Penalization versus Goldenshluger-Lepski strategies in warped bases regression JO - ESAIM: Probability and Statistics PY - 2013 SP - 328 EP - 358 VL - 17 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2011165/ DO - 10.1051/ps/2011165 LA - en ID - PS_2013__17__328_0 ER -
%0 Journal Article %A Chagny, Gaëlle %T Penalization versus Goldenshluger-Lepski strategies in warped bases regression %J ESAIM: Probability and Statistics %D 2013 %P 328-358 %V 17 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2011165/ %R 10.1051/ps/2011165 %G en %F PS_2013__17__328_0
Chagny, Gaëlle. Penalization versus Goldenshluger-Lepski strategies in warped bases regression. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 328-358. doi: 10.1051/ps/2011165
Cité par Sources :