Polynomial deviation bounds for recurrent Harris processes having general state space
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 195-218

Voir la notice de l'article provenant de la source Numdam

Consider a strong Markov process in continuous time, taking values in some Polish state space. Recently, Douc et al. [Stoc. Proc. Appl. 119, (2009) 897-923] introduced verifiable conditions in terms of a supermartingale property implying an explicit control of modulated moments of hitting times. We show how this control can be translated into a control of polynomial moments of abstract regeneration times which are obtained by using the regeneration method of Nummelin, extended to the time-continuous context. As a consequence, if a p-th moment of the regeneration times exists, we obtain non asymptotic deviation bounds of the form

P ν 1 t 0 t f(X s )ds-μ(f)K(p)1 t p-1 1 2(p-1) f 2(p-1) ,p2.
P ν 1 t ∫ 0 t f ( X s ) d s - μ ( f ) ≥ ε ≤ K ( p ) 1 t p - 1 1 ε 2 ( p - 1 ) ∥ f ∥ ∞ 2 ( p - 1 ) , p ≥ 2. Here, f is a bounded function and μ is the invariant measure of the process. We give several examples, including elliptic stochastic differential equations and stochastic differential equations driven by a jump noise.

DOI : 10.1051/ps/2011156
Classification : 60J55, 60J35, 60F10, 62M05
Keywords: Harris recurrence, polynomial ergodicity, Nummelin splitting, continuous time Markov processes, drift condition, modulated moment
@article{PS_2013__17__195_0,
     author = {L\"ocherbach, Eva and Loukianova, Dasha},
     title = {Polynomial deviation bounds for recurrent {Harris} processes having general state space},
     journal = {ESAIM: Probability and Statistics},
     pages = {195--218},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011156},
     mrnumber = {3021315},
     zbl = {1296.60199},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011156/}
}
TY  - JOUR
AU  - Löcherbach, Eva
AU  - Loukianova, Dasha
TI  - Polynomial deviation bounds for recurrent Harris processes having general state space
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 195
EP  - 218
VL  - 17
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2011156/
DO  - 10.1051/ps/2011156
LA  - en
ID  - PS_2013__17__195_0
ER  - 
%0 Journal Article
%A Löcherbach, Eva
%A Loukianova, Dasha
%T Polynomial deviation bounds for recurrent Harris processes having general state space
%J ESAIM: Probability and Statistics
%D 2013
%P 195-218
%V 17
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2011156/
%R 10.1051/ps/2011156
%G en
%F PS_2013__17__195_0
Löcherbach, Eva; Loukianova, Dasha. Polynomial deviation bounds for recurrent Harris processes having general state space. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 195-218. doi: 10.1051/ps/2011156

Cité par Sources :