Voir la notice de l'article provenant de la source Numdam
In this note we prove that the local martingale part of a convex function of a -dimensional semimartingale can be written in terms of an Itô stochastic integral , where is some particular measurable choice of subgradient of at , and is the martingale part of . This result was first proved by Bouleau in [N. Bouleau, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 87-90]. Here we present a new treatment of the problem. We first prove the result for , where is a standard Brownian motion, and then pass to the limit as , using results in [M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188-193; E. Carlen and P. Protter, Illinois J. Math. 36 (1992) 420-427]. The former paper concerns convergence of semimartingale decompositions of semimartingales, while the latter studies a special case of converging convex functions of semimartingales.
@article{PS_2013__17__293_0, author = {Grinberg, Nastasiya F.}, title = {Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation}, journal = {ESAIM: Probability and Statistics}, pages = {293--306}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2011146}, mrnumber = {3066381}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011146/} }
TY - JOUR AU - Grinberg, Nastasiya F. TI - Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation JO - ESAIM: Probability and Statistics PY - 2013 SP - 293 EP - 306 VL - 17 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2011146/ DO - 10.1051/ps/2011146 LA - en ID - PS_2013__17__293_0 ER -
%0 Journal Article %A Grinberg, Nastasiya F. %T Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation %J ESAIM: Probability and Statistics %D 2013 %P 293-306 %V 17 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2011146/ %R 10.1051/ps/2011146 %G en %F PS_2013__17__293_0
Grinberg, Nastasiya F. Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 293-306. doi: 10.1051/ps/2011146
Cité par Sources :