Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 293-306

Voir la notice de l'article provenant de la source Numdam

In this note we prove that the local martingale part of a convex function f of a d -dimensional semimartingale X = M + A can be written in terms of an Itô stochastic integral H ( X ) d M , where H ( x ) is some particular measurable choice of subgradient ¯ f ( x ) of f at x , and M is the martingale part of X . This result was first proved by Bouleau in [N. Bouleau, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 87-90]. Here we present a new treatment of the problem. We first prove the result for X ˜ = X + ϵ B , ϵ > 0 , where B is a standard Brownian motion, and then pass to the limit as ϵ 0 , using results in [M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188-193; E. Carlen and P. Protter, Illinois J. Math. 36 (1992) 420-427]. The former paper concerns convergence of semimartingale decompositions of semimartingales, while the latter studies a special case of converging convex functions of semimartingales.

DOI : 10.1051/ps/2011146
Classification : 60H05
Keywords: Itô's lemma, continuous semimartingales, convex functions
@article{PS_2013__17__293_0,
     author = {Grinberg, Nastasiya F.},
     title = {Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation},
     journal = {ESAIM: Probability and Statistics},
     pages = {293--306},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011146},
     mrnumber = {3066381},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011146/}
}
TY  - JOUR
AU  - Grinberg, Nastasiya F.
TI  - Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 293
EP  - 306
VL  - 17
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2011146/
DO  - 10.1051/ps/2011146
LA  - en
ID  - PS_2013__17__293_0
ER  - 
%0 Journal Article
%A Grinberg, Nastasiya F.
%T Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation
%J ESAIM: Probability and Statistics
%D 2013
%P 293-306
%V 17
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2011146/
%R 10.1051/ps/2011146
%G en
%F PS_2013__17__293_0
Grinberg, Nastasiya F. Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 293-306. doi: 10.1051/ps/2011146

Cité par Sources :