Asymptotic normality of randomly truncated stochastic algorithms
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 105-119

Voir la notice de l'article provenant de la source Numdam

We study the convergence rate of randomly truncated stochastic algorithms, which consist in the truncation of the standard Robbins-Monro procedure on an increasing sequence of compact sets. Such a truncation is often required in practice to ensure convergence when standard algorithms fail because the expected-value function grows too fast. In this work, we give a self contained proof of a central limit theorem for this algorithm under local assumptions on the expected-value function, which are fairly easy to check in practice.

DOI : 10.1051/ps/2011110
Classification : 62L20, 60F05, 62F12
Keywords: stochastic approximation, central limit theorem, randomly truncated stochastic algorithms, martingale arrays
@article{PS_2013__17__105_0,
     author = {Lelong, J\'er\^ome},
     title = {Asymptotic normality of randomly truncated stochastic algorithms},
     journal = {ESAIM: Probability and Statistics},
     pages = {105--119},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011110},
     mrnumber = {3021311},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011110/}
}
TY  - JOUR
AU  - Lelong, Jérôme
TI  - Asymptotic normality of randomly truncated stochastic algorithms
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 105
EP  - 119
VL  - 17
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2011110/
DO  - 10.1051/ps/2011110
LA  - en
ID  - PS_2013__17__105_0
ER  - 
%0 Journal Article
%A Lelong, Jérôme
%T Asymptotic normality of randomly truncated stochastic algorithms
%J ESAIM: Probability and Statistics
%D 2013
%P 105-119
%V 17
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2011110/
%R 10.1051/ps/2011110
%G en
%F PS_2013__17__105_0
Lelong, Jérôme. Asymptotic normality of randomly truncated stochastic algorithms. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 105-119. doi: 10.1051/ps/2011110

Cité par Sources :