Asymptotic normality of randomly truncated stochastic algorithms
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 105-119
Cet article a éte moissonné depuis la source Numdam
We study the convergence rate of randomly truncated stochastic algorithms, which consist in the truncation of the standard Robbins-Monro procedure on an increasing sequence of compact sets. Such a truncation is often required in practice to ensure convergence when standard algorithms fail because the expected-value function grows too fast. In this work, we give a self contained proof of a central limit theorem for this algorithm under local assumptions on the expected-value function, which are fairly easy to check in practice.
DOI :
10.1051/ps/2011110
Classification :
62L20, 60F05, 62F12
Keywords: stochastic approximation, central limit theorem, randomly truncated stochastic algorithms, martingale arrays
Keywords: stochastic approximation, central limit theorem, randomly truncated stochastic algorithms, martingale arrays
@article{PS_2013__17__105_0,
author = {Lelong, J\'er\^ome},
title = {Asymptotic normality of randomly truncated stochastic algorithms},
journal = {ESAIM: Probability and Statistics},
pages = {105--119},
year = {2013},
publisher = {EDP-Sciences},
volume = {17},
doi = {10.1051/ps/2011110},
mrnumber = {3021311},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011110/}
}
TY - JOUR AU - Lelong, Jérôme TI - Asymptotic normality of randomly truncated stochastic algorithms JO - ESAIM: Probability and Statistics PY - 2013 SP - 105 EP - 119 VL - 17 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2011110/ DO - 10.1051/ps/2011110 LA - en ID - PS_2013__17__105_0 ER -
Lelong, Jérôme. Asymptotic normality of randomly truncated stochastic algorithms. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 105-119. doi: 10.1051/ps/2011110
Cité par Sources :