Voir la notice de l'article provenant de la source Numdam
(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.
@article{PS_2012__16__222_0, author = {Istas, Jacques}, title = {Manifold indexed fractional fields}, journal = {ESAIM: Probability and Statistics}, pages = {222--276}, publisher = {EDP-Sciences}, volume = {16}, year = {2012}, doi = {10.1051/ps/2011106}, mrnumber = {2956575}, zbl = {1275.60041}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011106/} }
Istas, Jacques. Manifold indexed fractional fields. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 222-276. doi: 10.1051/ps/2011106
Cité par Sources :