Stationary gaussian random fields on hyperbolic spaces and on euclidean spheres
ESAIM: Probability and Statistics, Tome 16 (2012), pp. 165-221

Voir la notice de l'article provenant de la source Numdam

We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.

DOI : 10.1051/ps/2011105
Classification : 60G15, 60G10, 51M10
Keywords: hyperbolic space, random fields, Lévy's brownian field
@article{PS_2012__16__165_0,
     author = {Cohen, S. and Lifshits, M. A.},
     title = {Stationary gaussian random fields on hyperbolic spaces and on euclidean spheres},
     journal = {ESAIM: Probability and Statistics},
     pages = {165--221},
     publisher = {EDP-Sciences},
     volume = {16},
     year = {2012},
     doi = {10.1051/ps/2011105},
     mrnumber = {2946126},
     zbl = {1275.60038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011105/}
}
TY  - JOUR
AU  - Cohen, S.
AU  - Lifshits, M. A.
TI  - Stationary gaussian random fields on hyperbolic spaces and on euclidean spheres
JO  - ESAIM: Probability and Statistics
PY  - 2012
SP  - 165
EP  - 221
VL  - 16
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2011105/
DO  - 10.1051/ps/2011105
LA  - en
ID  - PS_2012__16__165_0
ER  - 
%0 Journal Article
%A Cohen, S.
%A Lifshits, M. A.
%T Stationary gaussian random fields on hyperbolic spaces and on euclidean spheres
%J ESAIM: Probability and Statistics
%D 2012
%P 165-221
%V 16
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2011105/
%R 10.1051/ps/2011105
%G en
%F PS_2012__16__165_0
Cohen, S.; Lifshits, M. A. Stationary gaussian random fields on hyperbolic spaces and on euclidean spheres. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 165-221. doi: 10.1051/ps/2011105

Cité par Sources :