Voir la notice de l'article provenant de la source Numdam
We prove the local asymptotic normality for the full parameters of the normal inverse Gaussian Lévy process , when we observe high-frequency data with sampling mesh and the terminal sampling time . The rate of convergence turns out to be for the dominating parameter , where stands for the heaviness of the tails, the degree of skewness, the scale, and the location. The essential feature in our study is that the suitably normalized increments of in small time is approximately Cauchy-distributed, which specifically comes out in the form of the asymptotic Fisher information matrix.
@article{PS_2013__17__13_0, author = {Kawai, Reiichiro and Masuda, Hiroki}, title = {Local asymptotic normality for normal inverse gaussian {L\'evy} processes with high-frequency sampling}, journal = {ESAIM: Probability and Statistics}, pages = {13--32}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2011101}, mrnumber = {3002994}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011101/} }
TY - JOUR AU - Kawai, Reiichiro AU - Masuda, Hiroki TI - Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling JO - ESAIM: Probability and Statistics PY - 2013 SP - 13 EP - 32 VL - 17 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2011101/ DO - 10.1051/ps/2011101 LA - en ID - PS_2013__17__13_0 ER -
%0 Journal Article %A Kawai, Reiichiro %A Masuda, Hiroki %T Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling %J ESAIM: Probability and Statistics %D 2013 %P 13-32 %V 17 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2011101/ %R 10.1051/ps/2011101 %G en %F PS_2013__17__13_0
Kawai, Reiichiro; Masuda, Hiroki. Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 13-32. doi: 10.1051/ps/2011101
Cité par Sources :