Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 13-32

Voir la notice de l'article provenant de la source Numdam

We prove the local asymptotic normality for the full parameters of the normal inverse Gaussian Lévy process X , when we observe high-frequency data X Δ n , X 2 Δ n , ... , X n Δ n with sampling mesh Δ n 0 and the terminal sampling time n Δ n . The rate of convergence turns out to be ( n Δ n , n Δ n , n , n ) for the dominating parameter ( α , β , δ , μ ) , where α stands for the heaviness of the tails, β the degree of skewness, δ the scale, and μ the location. The essential feature in our study is that the suitably normalized increments of X in small time is approximately Cauchy-distributed, which specifically comes out in the form of the asymptotic Fisher information matrix.

DOI : 10.1051/ps/2011101
Classification : 60G51, 62E20
Keywords: high-frequency sampling, local asymptotic normality, normal inverse gaussian Lévy process
@article{PS_2013__17__13_0,
     author = {Kawai, Reiichiro and Masuda, Hiroki},
     title = {Local asymptotic normality for normal inverse gaussian {L\'evy} processes with high-frequency sampling},
     journal = {ESAIM: Probability and Statistics},
     pages = {13--32},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011101},
     mrnumber = {3002994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2011101/}
}
TY  - JOUR
AU  - Kawai, Reiichiro
AU  - Masuda, Hiroki
TI  - Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 13
EP  - 32
VL  - 17
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2011101/
DO  - 10.1051/ps/2011101
LA  - en
ID  - PS_2013__17__13_0
ER  - 
%0 Journal Article
%A Kawai, Reiichiro
%A Masuda, Hiroki
%T Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling
%J ESAIM: Probability and Statistics
%D 2013
%P 13-32
%V 17
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2011101/
%R 10.1051/ps/2011101
%G en
%F PS_2013__17__13_0
Kawai, Reiichiro; Masuda, Hiroki. Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 13-32. doi: 10.1051/ps/2011101

Cité par Sources :