Hoeffding spaces and Specht modules
ESAIM: Probability and Statistics, Tome 15 (2011), pp. S58-S68
Cet article a éte moissonné depuis la source Numdam
It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.
DOI :
10.1051/ps/2010022
Classification :
05E10, 60C05
Keywords: exchangeability, finite population statistics, Hoeffding decompositions, irreducible representations, random permutations, Specht modules, symmetric group
Keywords: exchangeability, finite population statistics, Hoeffding decompositions, irreducible representations, random permutations, Specht modules, symmetric group
@article{PS_2011__15__S58_0,
author = {Peccati, Giovanni and Pycke, Jean-Renaud},
title = {Hoeffding spaces and {Specht} modules},
journal = {ESAIM: Probability and Statistics},
pages = {S58--S68},
year = {2011},
publisher = {EDP-Sciences},
volume = {15},
doi = {10.1051/ps/2010022},
mrnumber = {2817345},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2010022/}
}
TY - JOUR AU - Peccati, Giovanni AU - Pycke, Jean-Renaud TI - Hoeffding spaces and Specht modules JO - ESAIM: Probability and Statistics PY - 2011 SP - S58 EP - S68 VL - 15 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2010022/ DO - 10.1051/ps/2010022 LA - en ID - PS_2011__15__S58_0 ER -
Peccati, Giovanni; Pycke, Jean-Renaud. Hoeffding spaces and Specht modules. ESAIM: Probability and Statistics, Tome 15 (2011), pp. S58-S68. doi: 10.1051/ps/2010022
Cité par Sources :
