Limit theorems for measure-valued processes of the level-exceedance type
ESAIM: Probability and Statistics, Tome 15 (2011), pp. 291-319
Voir la notice de l'article provenant de la source Numdam
Let, for each t ∈ T, ψ(t, ۔) be a random measure on the Borel σ-algebra in ℝd such that Eψ(t, ℝd)k < ∞ for all k and let (t, ۔) be its characteristic function. We call the function (t1,…, tl ; z1,…, zl) = of arguments l ∈ ℕ, t1, t2… ∈ T, z1, z2 ∈ ℝd the covaristic of the measure-valued random function (MVRF) ψ(۔, ۔). A general limit theorem for MVRF's in terms of covaristics is proved and applied to functions of the kind ψn(t, B) = µ{x : ξn(t, x) ∈ B}, where μ is a nonrandom finite measure and, for each n, ξn is a time-dependent random field.
DOI :
10.1051/ps/2010004
Classification :
60G57, 60F17
Keywords: measure-valued process, covaristic, convergence, relative compactness
Keywords: measure-valued process, covaristic, convergence, relative compactness
@article{PS_2011__15__291_0, author = {Yurachkivsky, Andriy}, title = {Limit theorems for measure-valued processes of the level-exceedance type}, journal = {ESAIM: Probability and Statistics}, pages = {291--319}, publisher = {EDP-Sciences}, volume = {15}, year = {2011}, doi = {10.1051/ps/2010004}, mrnumber = {2870517}, zbl = {1296.60131}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2010004/} }
TY - JOUR AU - Yurachkivsky, Andriy TI - Limit theorems for measure-valued processes of the level-exceedance type JO - ESAIM: Probability and Statistics PY - 2011 SP - 291 EP - 319 VL - 15 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2010004/ DO - 10.1051/ps/2010004 LA - en ID - PS_2011__15__291_0 ER -
%0 Journal Article %A Yurachkivsky, Andriy %T Limit theorems for measure-valued processes of the level-exceedance type %J ESAIM: Probability and Statistics %D 2011 %P 291-319 %V 15 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2010004/ %R 10.1051/ps/2010004 %G en %F PS_2011__15__291_0
Yurachkivsky, Andriy. Limit theorems for measure-valued processes of the level-exceedance type. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 291-319. doi: 10.1051/ps/2010004
Cité par Sources :