Random fractals generated by a local gaussian process indexed by a class of functions
ESAIM: Probability and Statistics, Tome 15 (2011), pp. 249-269
Cet article a éte moissonné depuis la source Numdam
In this paper, we extend the results of Orey and Taylor [S. Orey and S.J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. 28 (1974) 174-192] relative to random fractals generated by oscillations of Wiener processes to a multivariate framework. We consider a setup where Gaussian processes are indexed by classes of functions.
DOI :
10.1051/ps/2010003
Classification :
60J65, 28A80
Keywords: random fractals, Hausdorff dimension, Wiener process
Keywords: random fractals, Hausdorff dimension, Wiener process
@article{PS_2011__15__249_0,
author = {Coiffard, Claire},
title = {Random fractals generated by a local gaussian process indexed by a class of functions},
journal = {ESAIM: Probability and Statistics},
pages = {249--269},
year = {2011},
publisher = {EDP-Sciences},
volume = {15},
doi = {10.1051/ps/2010003},
mrnumber = {2870515},
zbl = {1277.60067},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2010003/}
}
TY - JOUR AU - Coiffard, Claire TI - Random fractals generated by a local gaussian process indexed by a class of functions JO - ESAIM: Probability and Statistics PY - 2011 SP - 249 EP - 269 VL - 15 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2010003/ DO - 10.1051/ps/2010003 LA - en ID - PS_2011__15__249_0 ER -
%0 Journal Article %A Coiffard, Claire %T Random fractals generated by a local gaussian process indexed by a class of functions %J ESAIM: Probability and Statistics %D 2011 %P 249-269 %V 15 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2010003/ %R 10.1051/ps/2010003 %G en %F PS_2011__15__249_0
Coiffard, Claire. Random fractals generated by a local gaussian process indexed by a class of functions. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 249-269. doi: 10.1051/ps/2010003
Cité par Sources :
