Monte Carlo sampling approach to stochastic programming
ESAIM. Proceedings, Tome 13 (2003), pp. 65-73.

Voir la notice de l'article provenant de la source EDP Sciences

Various stochastic programming problems can be formulated as problems of optimization of an expected value function. Quite often the corresponding expectation function cannot be computed exactly and should be approximated, say by Monte Carlo sampling methods. In fact, in many practical applications, Monte Carlo simulation is the only reasonable way of estimating the expectation function. We discuss converges properties of the sample average approximation (SAA) approach to stochastic programming. We argue that the SAA method is easily implementable and can be surprisingly efficient for some classes of stochastic programming problems.
DOI : 10.1051/proc:2003003

A. Shapiro 1

1 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA
@article{EP_2003_13_a5,
     author = {A. Shapiro},
     title = {Monte {Carlo} sampling approach to stochastic programming},
     journal = {ESAIM. Proceedings},
     pages = {65--73},
     publisher = {mathdoc},
     volume = {13},
     year = {2003},
     doi = {10.1051/proc:2003003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:2003003/}
}
TY  - JOUR
AU  - A. Shapiro
TI  - Monte Carlo sampling approach to stochastic programming
JO  - ESAIM. Proceedings
PY  - 2003
SP  - 65
EP  - 73
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:2003003/
DO  - 10.1051/proc:2003003
LA  - en
ID  - EP_2003_13_a5
ER  - 
%0 Journal Article
%A A. Shapiro
%T Monte Carlo sampling approach to stochastic programming
%J ESAIM. Proceedings
%D 2003
%P 65-73
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:2003003/
%R 10.1051/proc:2003003
%G en
%F EP_2003_13_a5
A. Shapiro. Monte Carlo sampling approach to stochastic programming. ESAIM. Proceedings, Tome 13 (2003), pp. 65-73. doi : 10.1051/proc:2003003. http://geodesic.mathdoc.fr/articles/10.1051/proc:2003003/

Cité par Sources :