Rational energy decay rate for a wave equation with dynamical control
ESAIM. Proceedings, Tome 8 (2000), pp. 161-168.

Voir la notice de l'article provenant de la source EDP Sciences

We consider a wave equation with dynamical control. We first establish the rational energy decay rate using a multiplier method. Next, using a spectrum method, we prove that the rational energy decay rate is optimal.
DOI : 10.1051/proc:2000012

Ali Wehbe 1

1 Institut de Recherche Mathématique Avancée, Université Louis Pasteur de Strasbourg, 7, rue René-Descartes, 67084 Strasbourg Cedex, France
@article{EP_2000_8_a11,
     author = {Ali Wehbe},
     title = {Rational energy decay rate for a wave equation with dynamical control},
     journal = {ESAIM. Proceedings},
     pages = {161--168},
     publisher = {mathdoc},
     volume = {8},
     year = {2000},
     doi = {10.1051/proc:2000012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:2000012/}
}
TY  - JOUR
AU  - Ali Wehbe
TI  - Rational energy decay rate for a wave equation with dynamical control
JO  - ESAIM. Proceedings
PY  - 2000
SP  - 161
EP  - 168
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:2000012/
DO  - 10.1051/proc:2000012
LA  - en
ID  - EP_2000_8_a11
ER  - 
%0 Journal Article
%A Ali Wehbe
%T Rational energy decay rate for a wave equation with dynamical control
%J ESAIM. Proceedings
%D 2000
%P 161-168
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:2000012/
%R 10.1051/proc:2000012
%G en
%F EP_2000_8_a11
Ali Wehbe. Rational energy decay rate for a wave equation with dynamical control. ESAIM. Proceedings, Tome 8 (2000), pp. 161-168. doi : 10.1051/proc:2000012. http://geodesic.mathdoc.fr/articles/10.1051/proc:2000012/

Cité par Sources :