1Conservatoire National des Arts et Métiers, 15 rue Marat, F-78 210 Saint Cyr l'Ecole, France 2Institut de Recherche Mathématique Avancée, Université de Louis Pasteur de Strasbourg, 7 Rue René-Descartes, 67084 Strasbourg Cedex, France
ESAIM. Proceedings, Tome 8 (2000), pp. 39-52
Cet article a éte moissonné depuis la source EDP Sciences
In this communication we present a numerical scheme for the resolution of matrix Riccati equation used in control problems. The scheme is unconditionnally stable and the solution is definite positive at each time step of the resolution. We prove the convergence in the scalar case and present several numerical experiments for classical test cases.
François Dubois 
1
;
Abdelkader Saïdi 
2
1
Conservatoire National des Arts et Métiers, 15 rue Marat, F-78 210 Saint Cyr l'Ecole, France
2
Institut de Recherche Mathématique Avancée, Université de Louis Pasteur de Strasbourg, 7 Rue René-Descartes, 67084 Strasbourg Cedex, France
@article{EP_2000_8_a2,
author = {Fran\c{c}ois Dubois and Abdelkader Sa{\"\i}di},
title = {Unconditionally stable scheme for {Riccati} equation},
journal = {ESAIM. Proceedings},
pages = {39--52},
year = {2000},
volume = {8},
doi = {10.1051/proc:2000003},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:2000003/}
}
TY - JOUR
AU - François Dubois
AU - Abdelkader Saïdi
TI - Unconditionally stable scheme for Riccati equation
JO - ESAIM. Proceedings
PY - 2000
SP - 39
EP - 52
VL - 8
UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:2000003/
DO - 10.1051/proc:2000003
LA - en
ID - EP_2000_8_a2
ER -
François Dubois; Abdelkader Saïdi. Unconditionally stable scheme for Riccati equation. ESAIM. Proceedings, Tome 8 (2000), pp. 39-52. doi: 10.1051/proc:2000003