Optimal control for the obstacle problem with state constraints
ESAIM. Proceedings, Tome 4 (1998), pp. 7-19.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we investigate optimal control problems governed by elliptic variational inequalities of the obstacle type. We show how to obtain optimality conditions for a relaxed problem with or without state constraints. Then we present the optimality system related to the original problem with state constraints, using a generalized derivative.
DOI : 10.1051/proc:1998018

M. Bergounioux 1 ; D. Tiba 2

1 UMR-CNRS 6628, Université d'Orléans, U.F.R. Sciences, B.P. 6759, F-45067 Orléans Cedex 2, France
2 Institute for Mathematics, Romanian Academy of Sciences, 70700 Bucuresti P.O.Box 1-764, Romania
@article{EP_1998_4_a1,
     author = {M. Bergounioux and D. Tiba},
     title = {Optimal control for the obstacle problem with state constraints},
     journal = {ESAIM. Proceedings},
     pages = {7--19},
     publisher = {mathdoc},
     volume = {4},
     year = {1998},
     doi = {10.1051/proc:1998018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1998018/}
}
TY  - JOUR
AU  - M. Bergounioux
AU  - D. Tiba
TI  - Optimal control for the obstacle problem with state constraints
JO  - ESAIM. Proceedings
PY  - 1998
SP  - 7
EP  - 19
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:1998018/
DO  - 10.1051/proc:1998018
LA  - en
ID  - EP_1998_4_a1
ER  - 
%0 Journal Article
%A M. Bergounioux
%A D. Tiba
%T Optimal control for the obstacle problem with state constraints
%J ESAIM. Proceedings
%D 1998
%P 7-19
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:1998018/
%R 10.1051/proc:1998018
%G en
%F EP_1998_4_a1
M. Bergounioux; D. Tiba. Optimal control for the obstacle problem with state constraints. ESAIM. Proceedings, Tome 4 (1998), pp. 7-19. doi : 10.1051/proc:1998018. http://geodesic.mathdoc.fr/articles/10.1051/proc:1998018/

Cité par Sources :