Boundary control and dynamical reconstruction of vector fileds (the BC-method)
ESAIM. Proceedings, Tome 4 (1998), pp. 1-6.

Voir la notice de l'article provenant de la source EDP Sciences

An approach to the dynamical inverse problems (IP's) based upon their relations to the Boundary Control Theory (the so-called BC-method) is developed. The method is applied to the problem of reconstruction of a vector field given on a Riemannian manifold via the response operator (the dynamical Dirichlet-to-Neumann map). A peculiarity of the case under consideration is that the operator which governs an evolution of the corresponding dynamical system is nonselfadjoint. The paper announces the results and gives a brief description of technique of the BC-method.
DOI : 10.1051/proc:1998017

M. I. Belishev 1

1 St. Petersbourg Department of Steklov Mathematical Institute
@article{EP_1998_4_a0,
     author = {M. I. Belishev},
     title = {Boundary control and dynamical reconstruction of vector fileds (the {BC-method)}},
     journal = {ESAIM. Proceedings},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {4},
     year = {1998},
     doi = {10.1051/proc:1998017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1998017/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - Boundary control and dynamical reconstruction of vector fileds (the BC-method)
JO  - ESAIM. Proceedings
PY  - 1998
SP  - 1
EP  - 6
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:1998017/
DO  - 10.1051/proc:1998017
LA  - en
ID  - EP_1998_4_a0
ER  - 
%0 Journal Article
%A M. I. Belishev
%T Boundary control and dynamical reconstruction of vector fileds (the BC-method)
%J ESAIM. Proceedings
%D 1998
%P 1-6
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:1998017/
%R 10.1051/proc:1998017
%G en
%F EP_1998_4_a0
M. I. Belishev. Boundary control and dynamical reconstruction of vector fileds (the BC-method). ESAIM. Proceedings, Tome 4 (1998), pp. 1-6. doi : 10.1051/proc:1998017. http://geodesic.mathdoc.fr/articles/10.1051/proc:1998017/

Cité par Sources :