Simultaneaous approximation of a family of (stochastic) differential equations
ESAIM. Proceedings, Tome 5 (1998), pp. 69-74
Cet article a éte moissonné depuis la source EDP Sciences
To approximate the fractional integral of order a in (0,1), we use an integral representation based on exponential functions introduced in a previous paper, and we present a scheme to approximate the whole family of associated linear differential equations: dy(x,t)/dt=u-xy(x,t), for any x positive real. We show how to extend these results to the stochastic case u=''white noise'', the fractional integration of which is a fractional brownian motion.
Affiliations des auteurs :
Philippe Carmona 1 ; Laure Coutin 1
@article{EP_1998_5_a5,
author = {Philippe Carmona and Laure Coutin},
title = {Simultaneaous approximation of a family of (stochastic) differential equations},
journal = {ESAIM. Proceedings},
pages = {69--74},
year = {1998},
volume = {5},
doi = {10.1051/proc:1998013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1998013/}
}
TY - JOUR AU - Philippe Carmona AU - Laure Coutin TI - Simultaneaous approximation of a family of (stochastic) differential equations JO - ESAIM. Proceedings PY - 1998 SP - 69 EP - 74 VL - 5 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:1998013/ DO - 10.1051/proc:1998013 LA - en ID - EP_1998_5_a5 ER -
Philippe Carmona; Laure Coutin. Simultaneaous approximation of a family of (stochastic) differential equations. ESAIM. Proceedings, Tome 5 (1998), pp. 69-74. doi: 10.1051/proc:1998013
Cité par Sources :