Simultaneaous approximation of a family of (stochastic) differential equations
ESAIM. Proceedings, Tome 5 (1998), pp. 69-74.

Voir la notice de l'article provenant de la source EDP Sciences

To approximate the fractional integral of order a in (0,1), we use an integral representation based on exponential functions introduced in a previous paper, and we present a scheme to approximate the whole family of associated linear differential equations: dy(x,t)/dt=u-xy(x,t), for any x positive real. We show how to extend these results to the stochastic case u=''white noise'', the fractional integration of which is a fractional brownian motion.
DOI : 10.1051/proc:1998013

Philippe Carmona 1 ; Laure Coutin 1

1 Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
@article{EP_1998_5_a5,
     author = {Philippe Carmona and Laure Coutin},
     title = {Simultaneaous approximation of a family of (stochastic) differential equations},
     journal = {ESAIM. Proceedings},
     pages = {69--74},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     doi = {10.1051/proc:1998013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1998013/}
}
TY  - JOUR
AU  - Philippe Carmona
AU  - Laure Coutin
TI  - Simultaneaous approximation of a family of (stochastic) differential equations
JO  - ESAIM. Proceedings
PY  - 1998
SP  - 69
EP  - 74
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:1998013/
DO  - 10.1051/proc:1998013
LA  - en
ID  - EP_1998_5_a5
ER  - 
%0 Journal Article
%A Philippe Carmona
%A Laure Coutin
%T Simultaneaous approximation of a family of (stochastic) differential equations
%J ESAIM. Proceedings
%D 1998
%P 69-74
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:1998013/
%R 10.1051/proc:1998013
%G en
%F EP_1998_5_a5
Philippe Carmona; Laure Coutin. Simultaneaous approximation of a family of (stochastic) differential equations. ESAIM. Proceedings, Tome 5 (1998), pp. 69-74. doi : 10.1051/proc:1998013. http://geodesic.mathdoc.fr/articles/10.1051/proc:1998013/

Cité par Sources :