The stochastic vortex simulation of an unsteady viscous flow in a multiconnected domain
ESAIM. Proceedings, Tome 1 (1996), pp. 153-167.

Voir la notice de l'article provenant de la source EDP Sciences

Vortex methods applied to flows in multiconnected domains are studied. The objective of the work is to construct a vortex method which eliminates the possibility of non-physical solutions in the pressure fields calculated a posteriori from the velocity and vorticity fields. Application is made in the case of an annular domain. It is shown that certain additional constrains concerning the production of vorticity on the boundary have to be imposed.
DOI : 10.1051/proc:1996035

J. Szumbarski 1 ; P. Wald 1

1 Department of Aerodynamics The Institute of Aircraft Engineering and Applied Mechanics Warsaw University of Technology, Warsaw, Poland
@article{EP_1996_1_a10,
     author = {J. Szumbarski and P. Wald},
     title = {The stochastic vortex simulation of an unsteady viscous flow in a multiconnected domain},
     journal = {ESAIM. Proceedings},
     pages = {153--167},
     publisher = {mathdoc},
     volume = {1},
     year = {1996},
     doi = {10.1051/proc:1996035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1996035/}
}
TY  - JOUR
AU  - J. Szumbarski
AU  - P. Wald
TI  - The stochastic vortex simulation of an unsteady viscous flow in a multiconnected domain
JO  - ESAIM. Proceedings
PY  - 1996
SP  - 153
EP  - 167
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:1996035/
DO  - 10.1051/proc:1996035
LA  - en
ID  - EP_1996_1_a10
ER  - 
%0 Journal Article
%A J. Szumbarski
%A P. Wald
%T The stochastic vortex simulation of an unsteady viscous flow in a multiconnected domain
%J ESAIM. Proceedings
%D 1996
%P 153-167
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:1996035/
%R 10.1051/proc:1996035
%G en
%F EP_1996_1_a10
J. Szumbarski; P. Wald. The stochastic vortex simulation of an unsteady viscous flow in a multiconnected domain. ESAIM. Proceedings, Tome 1 (1996), pp. 153-167. doi : 10.1051/proc:1996035. http://geodesic.mathdoc.fr/articles/10.1051/proc:1996035/

Cité par Sources :