Instability to longitudinal vortices in wavy shear flow
ESAIM. Proceedings, Tome 1 (1996), pp. 295-305.

Voir la notice de l'article provenant de la source EDP Sciences

Initially spanwise-independent small but finite-amplitude two-dimensional rotational waves and their nonlinear interaction with unidirectional O(1) shear flows are reviewed from the viewpoint of their instability to longitudinal vortex form. The wave-mean interaction is described by a generalized Lagrangian-mean formulation in combination with a separate theory to account for the back effect of the developing mean flow on the wave field. Both the inviscid and viscid eigenvalue problems relevant to the instability are discussed.
DOI : 10.1051/proc:1996025

W. R.C. Phillips 1 ; Q. Shen 1 ; Z. Wu 1

1 Department of Theoretical and Applied Mechanics University of Illinois at Urbana-Champaign Urbana IL 61801-2935, USA
@article{EP_1996_1_a20,
     author = {W. R.C. Phillips and Q. Shen and Z. Wu},
     title = {Instability to longitudinal vortices in wavy shear flow},
     journal = {ESAIM. Proceedings},
     pages = {295--305},
     publisher = {mathdoc},
     volume = {1},
     year = {1996},
     doi = {10.1051/proc:1996025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1996025/}
}
TY  - JOUR
AU  - W. R.C. Phillips
AU  - Q. Shen
AU  - Z. Wu
TI  - Instability to longitudinal vortices in wavy shear flow
JO  - ESAIM. Proceedings
PY  - 1996
SP  - 295
EP  - 305
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:1996025/
DO  - 10.1051/proc:1996025
LA  - en
ID  - EP_1996_1_a20
ER  - 
%0 Journal Article
%A W. R.C. Phillips
%A Q. Shen
%A Z. Wu
%T Instability to longitudinal vortices in wavy shear flow
%J ESAIM. Proceedings
%D 1996
%P 295-305
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:1996025/
%R 10.1051/proc:1996025
%G en
%F EP_1996_1_a20
W. R.C. Phillips; Q. Shen; Z. Wu. Instability to longitudinal vortices in wavy shear flow. ESAIM. Proceedings, Tome 1 (1996), pp. 295-305. doi : 10.1051/proc:1996025. http://geodesic.mathdoc.fr/articles/10.1051/proc:1996025/

Cité par Sources :