Initially spanwise-independent small but finite-amplitude two-dimensional rotational waves and their nonlinear interaction with unidirectional O(1) shear flows are reviewed from the viewpoint of their instability to longitudinal vortex form. The wave-mean interaction is described by a generalized Lagrangian-mean formulation in combination with a separate theory to account for the back effect of the developing mean flow on the wave field. Both the inviscid and viscid eigenvalue problems relevant to the instability are discussed.
@article{EP_1996_1_a20,
author = {W. R.C. Phillips and Q. Shen and Z. Wu},
title = {Instability to longitudinal vortices in wavy shear flow},
journal = {ESAIM. Proceedings},
pages = {295--305},
year = {1996},
volume = {1},
doi = {10.1051/proc:1996025},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1996025/}
}
TY - JOUR
AU - W. R.C. Phillips
AU - Q. Shen
AU - Z. Wu
TI - Instability to longitudinal vortices in wavy shear flow
JO - ESAIM. Proceedings
PY - 1996
SP - 295
EP - 305
VL - 1
UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:1996025/
DO - 10.1051/proc:1996025
LA - en
ID - EP_1996_1_a20
ER -
%0 Journal Article
%A W. R.C. Phillips
%A Q. Shen
%A Z. Wu
%T Instability to longitudinal vortices in wavy shear flow
%J ESAIM. Proceedings
%D 1996
%P 295-305
%V 1
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:1996025/
%R 10.1051/proc:1996025
%G en
%F EP_1996_1_a20
W. R.C. Phillips; Q. Shen; Z. Wu. Instability to longitudinal vortices in wavy shear flow. ESAIM. Proceedings, Tome 1 (1996), pp. 295-305. doi: 10.1051/proc:1996025