This paper describes the occurence of phase anholonomies in the context of point vortex problems for two-dimensional incompressible flows. After giving a brief description of anholonomic effects in other contexts, we focus attention on the restricted three-vortex problem and a simpler modified problem where the "Hannay-Berry" phase can be computed using multi-scale asymptotic methods. Our main emphasis in this paper is to show how the Hannay-Berry phase arises as the leading term in an asymptotic expansion as the result of a non-uniform limit process. We show how it arises when computing the long time growth rate of passive scalar interfaces as they wrap around vortex cores in the presence of a slowly varying background field due to other vortices, and discuss the results in the context of "spiral-vortex" models for 2D turbulence.
@article{EP_1996_1_a17,
author = {Paul K. Newton and Banavara Shashikanth},
title = {Vortex problems, rotating spiral structures, and the {Hannay-Berry} phase},
journal = {ESAIM. Proceedings},
pages = {255--265},
year = {1996},
volume = {1},
doi = {10.1051/proc:1996022},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1996022/}
}
TY - JOUR
AU - Paul K. Newton
AU - Banavara Shashikanth
TI - Vortex problems, rotating spiral structures, and the Hannay-Berry phase
JO - ESAIM. Proceedings
PY - 1996
SP - 255
EP - 265
VL - 1
UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:1996022/
DO - 10.1051/proc:1996022
LA - en
ID - EP_1996_1_a17
ER -
%0 Journal Article
%A Paul K. Newton
%A Banavara Shashikanth
%T Vortex problems, rotating spiral structures, and the Hannay-Berry phase
%J ESAIM. Proceedings
%D 1996
%P 255-265
%V 1
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:1996022/
%R 10.1051/proc:1996022
%G en
%F EP_1996_1_a17
Paul K. Newton; Banavara Shashikanth. Vortex problems, rotating spiral structures, and the Hannay-Berry phase. ESAIM. Proceedings, Tome 1 (1996), pp. 255-265. doi: 10.1051/proc:1996022