Numerical convergence of the random vortex method for complex flows
ESAIM. Proceedings, Tome 1 (1996), pp. 521-538
Cet article a éte moissonné depuis la source EDP Sciences
Vortex methods rely principally on a discretization of the continuous two-dimensional time dependent vorticity field into a large number of vortex "blobs", whose position and strength determine the underlying velocity field. In this paper, the convergence of the random vortex method (RVM) for a complex flow is studied in function of three discretization parameters. Two of these parameters are related to the spatial discretization of the vorticity, i.e. G(sheet or blob strength) and h (sheet length or core radius of a blob) and the third one to the discretization of time, ?t i.e. . Two principal events are observed. First, the computation works but the convergence is not attained. Second, the computation fails. The first behaviour is attributed to a lack of accuracy while the second is attributed to a lack of numerical stability. Once the stability conditions are satisfied, decreasing the value of the parameters always leads to convergence.
Affiliations des auteurs :
I. Mortazavi 1 ; P. Micheau 1 ; A. Giovannini 2
@article{EP_1996_1_a35,
author = {I. Mortazavi and P. Micheau and A. Giovannini},
title = {Numerical convergence of the random vortex method for complex flows},
journal = {ESAIM. Proceedings},
pages = {521--538},
year = {1996},
volume = {1},
doi = {10.1051/proc:1996021},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1996021/}
}
TY - JOUR AU - I. Mortazavi AU - P. Micheau AU - A. Giovannini TI - Numerical convergence of the random vortex method for complex flows JO - ESAIM. Proceedings PY - 1996 SP - 521 EP - 538 VL - 1 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:1996021/ DO - 10.1051/proc:1996021 LA - en ID - EP_1996_1_a35 ER -
I. Mortazavi; P. Micheau; A. Giovannini. Numerical convergence of the random vortex method for complex flows. ESAIM. Proceedings, Tome 1 (1996), pp. 521-538. doi: 10.1051/proc:1996021
Cité par Sources :