A numerical and analytical study of vortex rings with swirl
ESAIM. Proceedings, Tome 1 (1996), pp. 565-575
Cet article a éte moissonné depuis la source EDP Sciences
We study the growth of disturbances to vortex rings with swirl, which are exact solutions of the Euler equations of inviscid flow, using two contrasting methods. The motion of the perturbed vortex rings can be regarded as a prototype for the inviscid dynamics of vortex structures in 3D. Exact rings with swirl are computed as steady, axisymmetric flows using a variational method. Asymptotic analysis in the short wave limit, similar to geometric optics, leads to ordinary differential equations for perturbations along particle paths. These ODE's can be solved for the rings of interest, yielding predicted maximum growth rates for small disturbances. These rates are compared with the direct simulation of sample disturbances using a 3D vortex method to calculate the evolution according to the Euler equations.
Affiliations des auteurs :
Alexander Lifschitz 1 ; W. Henry Suters 2 ; J. Thomas Beale 3
@article{EP_1996_1_a38,
author = {Alexander Lifschitz and W. Henry Suters and J. Thomas Beale},
title = {A numerical and analytical study of vortex rings with swirl},
journal = {ESAIM. Proceedings},
pages = {565--575},
year = {1996},
volume = {1},
doi = {10.1051/proc:1996017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1996017/}
}
TY - JOUR AU - Alexander Lifschitz AU - W. Henry Suters AU - J. Thomas Beale TI - A numerical and analytical study of vortex rings with swirl JO - ESAIM. Proceedings PY - 1996 SP - 565 EP - 575 VL - 1 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:1996017/ DO - 10.1051/proc:1996017 LA - en ID - EP_1996_1_a38 ER -
Alexander Lifschitz; W. Henry Suters; J. Thomas Beale. A numerical and analytical study of vortex rings with swirl. ESAIM. Proceedings, Tome 1 (1996), pp. 565-575. doi: 10.1051/proc:1996017
Cité par Sources :