A novel second order accurate hybrid numerical approach for conservation laws
ESAIM. Proceedings, Tome 25 (2008), pp. 91-113
Cet article a éte moissonné depuis la source EDP Sciences
In this paper, we present a novel one-parameter hybrid scheme for hyperbolic systems of conservation laws. The parameter value can be adapted in each numerical cell in order to obtain the advantages of Lax-Wendroff flux (second order scheme) where the solution is locally smooth. On the other hand, the scheme can switch to the Lax-Friedrichs one if necessary in order to be oscillation free (Total Variation Diminushing). Various numerical examples illustrate the efficiency of our scheme.
Affiliations des auteurs :
Pascal Jaisson 1, 2 ; Florian De Vuyst 2, 3, 4
@article{EP_2008_25_a7,
author = {Pascal Jaisson and Florian De Vuyst},
title = {A novel second order accurate hybrid numerical approach for conservation laws},
journal = {ESAIM. Proceedings},
pages = {91--113},
year = {2008},
volume = {25},
doi = {10.1051/proc:082507},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:082507/}
}
TY - JOUR AU - Pascal Jaisson AU - Florian De Vuyst TI - A novel second order accurate hybrid numerical approach for conservation laws JO - ESAIM. Proceedings PY - 2008 SP - 91 EP - 113 VL - 25 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:082507/ DO - 10.1051/proc:082507 LA - en ID - EP_2008_25_a7 ER -
Pascal Jaisson; Florian De Vuyst. A novel second order accurate hybrid numerical approach for conservation laws. ESAIM. Proceedings, Tome 25 (2008), pp. 91-113. doi: 10.1051/proc:082507
Cité par Sources :