1Center for Biomedical Computing, Simula Research Laboratory, P.O.Box 134, 1325 Lysaker, Norway 2School of Mathematical Sciences, University ofNottingham, University Park, Nottingham NG7 2RD, UK & 3Center for Biomedical Computing, Simula Research Laboratory / Department of Informatics, University of Oslo, P.O.Box 134, 1325 Lysaker, Norway
ESAIM. Proceedings, Tome 23 (2008), pp. 78-97
Cet article a éte moissonné depuis la source EDP Sciences
Lung parenchyma is a foam-like material consisting of millions of alveoli. Sound transmission through parenchyma plays an important role in the non-invasive diagnosis of many lung diseases. We model the parenchyma as a porous solid with air-filled pores and consider the Biot equations as a model for its acoustic properties. The Biot equations govern small-amplitude wave propagation in fluid-saturated porous solids, and include the effects of relative motion between the fluid and the solid frame. The Biot equations can be derived from a micro-structure model of the porous material, and the material parameters in the equations can be obtained from the solution of two independent micro-structure problems, a fluid-cell problem (governed by the unsteady Stokes equations) and a solid-cell problem. We review the homogenization approach for media with periodic micro-structure, and solve a fluid-cell problem numerically for an idealized two-dimensional micro-scale geometry for a wide range of frequencies. We also discuss sound speeds in lung tissue.
Malin Siklosi 
1
;
Oliver E. Jensen 
2
;
Richard H. Tew 
2
;
Anders Logg 
3
1
Center for Biomedical Computing, Simula Research Laboratory, P.O.Box 134, 1325 Lysaker, Norway
2
School of Mathematical Sciences, University ofNottingham, University Park, Nottingham NG7 2RD, UK &
3
Center for Biomedical Computing, Simula Research Laboratory / Department of Informatics, University of Oslo, P.O.Box 134, 1325 Lysaker, Norway
@article{EP_2008_23_a6,
author = {Malin Siklosi and Oliver E. Jensen and Richard H. Tew and Anders Logg},
title = {Multiscale modeling of the acoustic properties of lung parenchyma},
journal = {ESAIM. Proceedings},
pages = {78--97},
year = {2008},
volume = {23},
doi = {10.1051/proc:082306},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:082306/}
}
TY - JOUR
AU - Malin Siklosi
AU - Oliver E. Jensen
AU - Richard H. Tew
AU - Anders Logg
TI - Multiscale modeling of the acoustic properties of lung parenchyma
JO - ESAIM. Proceedings
PY - 2008
SP - 78
EP - 97
VL - 23
UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:082306/
DO - 10.1051/proc:082306
LA - en
ID - EP_2008_23_a6
ER -
%0 Journal Article
%A Malin Siklosi
%A Oliver E. Jensen
%A Richard H. Tew
%A Anders Logg
%T Multiscale modeling of the acoustic properties of lung parenchyma
%J ESAIM. Proceedings
%D 2008
%P 78-97
%V 23
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:082306/
%R 10.1051/proc:082306
%G en
%F EP_2008_23_a6
Malin Siklosi; Oliver E. Jensen; Richard H. Tew; Anders Logg. Multiscale modeling of the acoustic properties of lung parenchyma. ESAIM. Proceedings, Tome 23 (2008), pp. 78-97. doi: 10.1051/proc:082306