Maximum-Norm Stability, Smoothing and Resolvent Estimates
for Parabolic Finite Element Equations
ESAIM. Proceedings, Tome 21 (2007), pp. 98-107
Cet article a éte moissonné depuis la source EDP Sciences
We survey work on stability and smoothing estimates in maximum-norm for spatially semidiscrete finite element approximations of a model parabolic equation, and related such estimates for the resolvent of the corresponding discrete elliptic operator. We end with a short discussion of stability of fully discrete time stepping methods.
@article{EP_2007_21_a8,
author = {Vidar Thom\'ee},
title = {Maximum-Norm {Stability,} {Smoothing} and {Resolvent} {Estimates
for} {Parabolic} {Finite} {Element} {Equations}},
journal = {ESAIM. Proceedings},
pages = {98--107},
year = {2007},
volume = {21},
doi = {10.1051/proc:072108},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:072108/}
}
TY - JOUR AU - Vidar Thomée TI - Maximum-Norm Stability, Smoothing and Resolvent Estimates for Parabolic Finite Element Equations JO - ESAIM. Proceedings PY - 2007 SP - 98 EP - 107 VL - 21 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:072108/ DO - 10.1051/proc:072108 LA - en ID - EP_2007_21_a8 ER -
Vidar Thomée. Maximum-Norm Stability, Smoothing and Resolvent Estimates for Parabolic Finite Element Equations. ESAIM. Proceedings, Tome 21 (2007), pp. 98-107. doi: 10.1051/proc:072108
Cité par Sources :