Une perturbation hyperbolique des équations de Navier-Stokes
ESAIM. Proceedings, Tome 21 (2007), pp. 65-87
Cet article a éte moissonné depuis la source EDP Sciences
In this paper, we consider a hyperbolic perturbation of the Navier-Stokes equations in , n=2,3, given by (0.2), which consists in adding the term to the Navier-Stokes equations. In the case n=2, we recall the global existence and uniqueness of mild solutions of (0.2), for initial data in the Hilbert space and appropriate forcing term f, when is small enough, that has been proved in [16]. In the three-dimensional case, we prove a global existence result under a smallness condition of the initial data in , , for an appropriate forcing term f, when is small enough. This smallness condition is analogous to the one known for the global existence of strong solutions of the three-dimensional Navier-Stokes equations.
Affiliations des auteurs :
Marius Paicu 1 ; Geneviève Raugel 2
@article{EP_2007_21_a6,
author = {Marius Paicu and Genevi\`eve Raugel},
title = {Une perturbation hyperbolique des \'equations de {Navier-Stokes}},
journal = {ESAIM. Proceedings},
pages = {65--87},
year = {2007},
volume = {21},
doi = {10.1051/proc:072106},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:072106/}
}
Marius Paicu; Geneviève Raugel. Une perturbation hyperbolique des équations de Navier-Stokes. ESAIM. Proceedings, Tome 21 (2007), pp. 65-87. doi: 10.1051/proc:072106
Cité par Sources :