Bounded convergence of convex composed functions
ESAIM. Proceedings, Tome 20 (2007), pp. 157-169.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we establish conditions that guarantee, in the setting of normed vector spaces, the bounded convergence (also called Attouch-Wets convergence) of convex composed functions. We also provide applications to the convergence of multipliers of families of constrained convex optimization and to the continuity of inf-convolution and level sum operations.
DOI : 10.1051/proc:072015

M. Laghdir 1 ; R. Benabbou 1 ; N. Benkenza 1

1 Département de Mathématiques et Informatique, Faculté des Sciences. B.P 20, El-Jadida, Maroc
@article{EP_2007_20_a15,
     author = {M. Laghdir and R. Benabbou and N. Benkenza},
     title = {Bounded convergence of convex composed functions},
     journal = {ESAIM. Proceedings},
     pages = {157--169},
     publisher = {mathdoc},
     volume = {20},
     year = {2007},
     doi = {10.1051/proc:072015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:072015/}
}
TY  - JOUR
AU  - M. Laghdir
AU  - R. Benabbou
AU  - N. Benkenza
TI  - Bounded convergence of convex composed functions
JO  - ESAIM. Proceedings
PY  - 2007
SP  - 157
EP  - 169
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:072015/
DO  - 10.1051/proc:072015
LA  - en
ID  - EP_2007_20_a15
ER  - 
%0 Journal Article
%A M. Laghdir
%A R. Benabbou
%A N. Benkenza
%T Bounded convergence of convex composed functions
%J ESAIM. Proceedings
%D 2007
%P 157-169
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:072015/
%R 10.1051/proc:072015
%G en
%F EP_2007_20_a15
M. Laghdir; R. Benabbou; N. Benkenza. Bounded convergence of convex composed functions. ESAIM. Proceedings, Tome 20 (2007), pp. 157-169. doi : 10.1051/proc:072015. http://geodesic.mathdoc.fr/articles/10.1051/proc:072015/

Cité par Sources :