In this paper we establish conditions that guarantee, in the setting of normed vector spaces, the bounded convergence (also called Attouch-Wets convergence) of convex composed functions. We also provide applications to the convergence of multipliers of families of constrained convex optimization and to the continuity of inf-convolution and level sum operations.
@article{EP_2007_20_a15,
author = {M. Laghdir and R. Benabbou and N. Benkenza},
title = {Bounded convergence of convex composed functions},
journal = {ESAIM. Proceedings},
pages = {157--169},
year = {2007},
volume = {20},
doi = {10.1051/proc:072015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:072015/}
}
TY - JOUR
AU - M. Laghdir
AU - R. Benabbou
AU - N. Benkenza
TI - Bounded convergence of convex composed functions
JO - ESAIM. Proceedings
PY - 2007
SP - 157
EP - 169
VL - 20
UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:072015/
DO - 10.1051/proc:072015
LA - en
ID - EP_2007_20_a15
ER -
%0 Journal Article
%A M. Laghdir
%A R. Benabbou
%A N. Benkenza
%T Bounded convergence of convex composed functions
%J ESAIM. Proceedings
%D 2007
%P 157-169
%V 20
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:072015/
%R 10.1051/proc:072015
%G en
%F EP_2007_20_a15
M. Laghdir; R. Benabbou; N. Benkenza. Bounded convergence of convex composed functions. ESAIM. Proceedings, Tome 20 (2007), pp. 157-169. doi: 10.1051/proc:072015