Non-linear Markov Chain Monte Carlo
ESAIM. Proceedings, Tome 19 (2007), pp. 79-84
Cet article a éte moissonné depuis la source EDP Sciences
In this paper we introduce a class of non-linear Markov Chain Monte Carlo (MCMC) methods for simulating from a probability measure π. Non-linear Markov kernels (e.g. Del Moral (2004)) can be constructed to admit π as an invariant distribution and have typically superior mixing properties to ordinary (linear) MCMC kernels. However, such non-linear kernels often cannot be simulated exactly, so, in the spirit of particle approximations of Feynman-Kac formulae (Del Moral 2004), we construct approximations of the non-linear kernels via Self-Interacting Markov Chains (Del Moral Miclo, Proc. R. Soc. Lond. A, 460, 325-46, 2004.) (SIMC). We present several non-linear kernels and investigate the performance of our approximations with some simulations.
Affiliations des auteurs :
Christophe Andrieu 1 ; Ajay Jasra 2 ; Arnaud Doucet 3 ; Pierre Del Moral 4
@article{EP_2007_19_a11,
author = {Christophe Andrieu and Ajay Jasra and Arnaud Doucet and Pierre Del Moral},
title = {Non-linear {Markov} {Chain} {Monte} {Carlo}},
journal = {ESAIM. Proceedings},
pages = {79--84},
year = {2007},
volume = {19},
doi = {10.1051/proc:071911},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:071911/}
}
TY - JOUR AU - Christophe Andrieu AU - Ajay Jasra AU - Arnaud Doucet AU - Pierre Del Moral TI - Non-linear Markov Chain Monte Carlo JO - ESAIM. Proceedings PY - 2007 SP - 79 EP - 84 VL - 19 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:071911/ DO - 10.1051/proc:071911 LA - en ID - EP_2007_19_a11 ER -
Christophe Andrieu; Ajay Jasra; Arnaud Doucet; Pierre Del Moral. Non-linear Markov Chain Monte Carlo. ESAIM. Proceedings, Tome 19 (2007), pp. 79-84. doi: 10.1051/proc:071911
Cité par Sources :