We consider continuous-time models where the observed process depends on an unobserved jump Markov Process. We develop a sequential Monte Carlo algorithm which makes it possible to filter and smooth this latent process, and compute the likelihood pointwise. We develop a Rao-Blackwellisation technique which allows to significantly reduce the Monte Carlo noise of this algorithm. Possible extensions of our algorithm and further directions of research are discussed.
@article{EP_2007_19_a3,
author = {Nicolas Chopin and Elisa Varini},
title = {Particle filtering for continuous-time hidden {Markov} models},
journal = {ESAIM. Proceedings},
pages = {12--17},
year = {2007},
volume = {19},
doi = {10.1051/proc:071903},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:071903/}
}
TY - JOUR
AU - Nicolas Chopin
AU - Elisa Varini
TI - Particle filtering for continuous-time hidden Markov models
JO - ESAIM. Proceedings
PY - 2007
SP - 12
EP - 17
VL - 19
UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:071903/
DO - 10.1051/proc:071903
LA - en
ID - EP_2007_19_a3
ER -
Nicolas Chopin; Elisa Varini. Particle filtering for continuous-time hidden Markov models. ESAIM. Proceedings, Tome 19 (2007), pp. 12-17. doi: 10.1051/proc:071903