Particle filtering for continuous-time hidden Markov models
ESAIM. Proceedings, Tome 19 (2007), pp. 12-17.

Voir la notice de l'article provenant de la source EDP Sciences

We consider continuous-time models where the observed process depends on an unobserved jump Markov Process. We develop a sequential Monte Carlo algorithm which makes it possible to filter and smooth this latent process, and compute the likelihood pointwise. We develop a Rao-Blackwellisation technique which allows to significantly reduce the Monte Carlo noise of this algorithm. Possible extensions of our algorithm and further directions of research are discussed.
DOI : 10.1051/proc:071903

Nicolas Chopin 1 ; Elisa Varini 2

1 ENSAE, France, and Bristol University, United Kingdom.
2 CNR, Milano, Italy.
@article{EP_2007_19_a3,
     author = {Nicolas Chopin and Elisa Varini},
     title = {Particle filtering for continuous-time hidden {Markov} models},
     journal = {ESAIM. Proceedings},
     pages = {12--17},
     publisher = {mathdoc},
     volume = {19},
     year = {2007},
     doi = {10.1051/proc:071903},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:071903/}
}
TY  - JOUR
AU  - Nicolas Chopin
AU  - Elisa Varini
TI  - Particle filtering for continuous-time hidden Markov models
JO  - ESAIM. Proceedings
PY  - 2007
SP  - 12
EP  - 17
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:071903/
DO  - 10.1051/proc:071903
LA  - en
ID  - EP_2007_19_a3
ER  - 
%0 Journal Article
%A Nicolas Chopin
%A Elisa Varini
%T Particle filtering for continuous-time hidden Markov models
%J ESAIM. Proceedings
%D 2007
%P 12-17
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:071903/
%R 10.1051/proc:071903
%G en
%F EP_2007_19_a3
Nicolas Chopin; Elisa Varini. Particle filtering for continuous-time hidden Markov models. ESAIM. Proceedings, Tome 19 (2007), pp. 12-17. doi : 10.1051/proc:071903. http://geodesic.mathdoc.fr/articles/10.1051/proc:071903/

Cité par Sources :