Une introduction au schéma de Boltzmann sur réseau
ESAIM. Proceedings, Tome 18 (2007), pp. 181-215
We propose an elementary introduction to the lattice Boltzmann scheme. We recall the physical (Boltzmann equation) and algorithmic (cellular automata) origins of this numerical method. For a one-dimensional example, we present in detail the two characteristic steps of the algorithm: the nonlinear collision step, local in space and the linear propagation phase with the neighbouring vertices, explicit in time. We then propose a generic Taylor-type development with the so-called equivalent partial differential equation. We obtain in this way formally a so-called Chapman-Enskog development where the small parameter is the discretization step of the scheme. At order zero, the lattice Boltzmann scheme satisfies a local thermodynamical equilibrium. At first order, it satisfies the Euler equations of gas dynamics and at second order the Navier-Stokes equations. Then we detail the classical case of the nine velocities model on a square lattice.
@article{EP_2007_18_a15,
author = {Francois Dubois},
title = {Une introduction au sch\'ema de {Boltzmann} sur r\'eseau},
journal = {ESAIM. Proceedings},
pages = {181--215},
year = {2007},
volume = {18},
doi = {10.1051/proc:071815},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:071815/}
}
Francois Dubois. Une introduction au schéma de Boltzmann sur réseau. ESAIM. Proceedings, Tome 18 (2007), pp. 181-215. doi: 10.1051/proc:071815
Cité par Sources :