We propose a deterministic model for crowd motion, based on a Lagrangian approach: each person is taken into account individually. We are especially interested in the modelling of evacuation: people are willing to exit a room with obstacles. The model takes the form of an evolution equation which involves a multivalued operator, which is not in general maximal monotone. Using recent results on the sweeping process, we establish the well-posedness of this problem under reasonable assumptions. We propose a numerical scheme, which we apply to two realistic situations.
@article{EP_2007_18_a12,
author = {Bertrand MAURY and Juliette VENEL},
title = {Un {Mod\`ele} de {Mouvements} de {Foule}},
journal = {ESAIM. Proceedings},
pages = {143--152},
year = {2007},
volume = {18},
doi = {10.1051/proc:071812},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:071812/}
}
TY - JOUR
AU - Bertrand MAURY
AU - Juliette VENEL
TI - Un Modèle de Mouvements de Foule
JO - ESAIM. Proceedings
PY - 2007
SP - 143
EP - 152
VL - 18
UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:071812/
DO - 10.1051/proc:071812
LA - en
ID - EP_2007_18_a12
ER -
%0 Journal Article
%A Bertrand MAURY
%A Juliette VENEL
%T Un Modèle de Mouvements de Foule
%J ESAIM. Proceedings
%D 2007
%P 143-152
%V 18
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:071812/
%R 10.1051/proc:071812
%G en
%F EP_2007_18_a12
Bertrand MAURY; Juliette VENEL. Un Modèle de Mouvements de Foule. ESAIM. Proceedings, Tome 18 (2007), pp. 143-152. doi: 10.1051/proc:071812