Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system
ESAIM. Proceedings, Tome 76 (2024), pp. 35-51.

Voir la notice de l'article provenant de la source EDP Sciences

We propose to extend the fix of Roe’s approximate Riemann solver developed for the Barotropic Euler equations in [2] to the full Euler equations. This scheme is built mainly to handle low Mach acousticwaves. Moreover, compared to pressure-centered type schemes, this numerical fix has the advantage of improving the numerical solution in the sense that the oscillating modes are reduced. The theoretical study is based on a two-time scales asymptotic analysis. It is proved that the Euler system equipped with a general equation of state is consistent with a first-order wave system in a low Mach number regime. Similar analysis is performed at the discrete level on the Roe scheme to derive the new fix. Numerical tests confirm the results obtained for the Barotropic case about the ability of this fix to deal with both steady and low Mach acoustic computations also in the case of full Euler equations.
DOI : 10.1051/proc/202476035

Thomas Galié 1 ; Jonathan Jung 2, 3 ; Ibtissem Lannabi 2, 3 ; Vincent Perrier 2, 3

1 Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, France
2 CNRS/Univ Pau and Pays Adour/E2S UPPA, Laboratoire de Mathématiques et de leurs Applications de Pau - Fédération IPRA, UMR5142, 64000, Pau, France
3 Cagire team, Inria Bordeaux Sud-Ouest, France
@article{EP_2024_76_a3,
     author = {Thomas Gali\'e and Jonathan Jung and Ibtissem Lannabi and Vincent Perrier},
     title = {Extension of an {all-Mach} {Roe} scheme able to deal with low {Mach} acoustics to full {Euler} system},
     journal = {ESAIM. Proceedings},
     pages = {35--51},
     publisher = {mathdoc},
     volume = {76},
     year = {2024},
     doi = {10.1051/proc/202476035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202476035/}
}
TY  - JOUR
AU  - Thomas Galié
AU  - Jonathan Jung
AU  - Ibtissem Lannabi
AU  - Vincent Perrier
TI  - Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system
JO  - ESAIM. Proceedings
PY  - 2024
SP  - 35
EP  - 51
VL  - 76
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/202476035/
DO  - 10.1051/proc/202476035
LA  - en
ID  - EP_2024_76_a3
ER  - 
%0 Journal Article
%A Thomas Galié
%A Jonathan Jung
%A Ibtissem Lannabi
%A Vincent Perrier
%T Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system
%J ESAIM. Proceedings
%D 2024
%P 35-51
%V 76
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/202476035/
%R 10.1051/proc/202476035
%G en
%F EP_2024_76_a3
Thomas Galié; Jonathan Jung; Ibtissem Lannabi; Vincent Perrier. Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system. ESAIM. Proceedings, Tome 76 (2024), pp. 35-51. doi : 10.1051/proc/202476035. http://geodesic.mathdoc.fr/articles/10.1051/proc/202476035/

Cité par Sources :