Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system
ESAIM. Proceedings, Tome 76 (2024), pp. 35-51
Cet article a éte moissonné depuis la source EDP Sciences
We propose to extend the fix of Roe’s approximate Riemann solver developed for the Barotropic Euler equations in [2] to the full Euler equations. This scheme is built mainly to handle low Mach acousticwaves. Moreover, compared to pressure-centered type schemes, this numerical fix has the advantage of improving the numerical solution in the sense that the oscillating modes are reduced. The theoretical study is based on a two-time scales asymptotic analysis. It is proved that the Euler system equipped with a general equation of state is consistent with a first-order wave system in a low Mach number regime. Similar analysis is performed at the discrete level on the Roe scheme to derive the new fix. Numerical tests confirm the results obtained for the Barotropic case about the ability of this fix to deal with both steady and low Mach acoustic computations also in the case of full Euler equations.
Affiliations des auteurs :
Thomas Galié 1 ; Jonathan Jung 2, 3 ; Ibtissem Lannabi 2, 3 ; Vincent Perrier 2, 3
@article{EP_2024_76_a3,
author = {Thomas Gali\'e and Jonathan Jung and Ibtissem Lannabi and Vincent Perrier},
title = {Extension of an {all-Mach} {Roe} scheme able to deal with low {Mach} acoustics to full {Euler} system},
journal = {ESAIM. Proceedings},
pages = {35--51},
year = {2024},
volume = {76},
doi = {10.1051/proc/202476035},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202476035/}
}
TY - JOUR AU - Thomas Galié AU - Jonathan Jung AU - Ibtissem Lannabi AU - Vincent Perrier TI - Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system JO - ESAIM. Proceedings PY - 2024 SP - 35 EP - 51 VL - 76 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/202476035/ DO - 10.1051/proc/202476035 LA - en ID - EP_2024_76_a3 ER -
%0 Journal Article %A Thomas Galié %A Jonathan Jung %A Ibtissem Lannabi %A Vincent Perrier %T Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system %J ESAIM. Proceedings %D 2024 %P 35-51 %V 76 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/202476035/ %R 10.1051/proc/202476035 %G en %F EP_2024_76_a3
Thomas Galié; Jonathan Jung; Ibtissem Lannabi; Vincent Perrier. Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system. ESAIM. Proceedings, Tome 76 (2024), pp. 35-51. doi: 10.1051/proc/202476035
Cité par Sources :