Topics in robust statistical learning
ESAIM. Proceedings, Tome 74 (2023), pp. 119-136
Cet article a éte moissonné depuis la source EDP Sciences
Some recent contributions to robust inference are presented. Firstly, the classical problem of robust M-estimation of a location parameter is revisited using an optimal transport approach - with specifically designed Wasserstein-type distances - that reduces robustness to a continuity property. Secondly, a procedure of estimation of the distance function to a compact set is described, using union of balls. This methodology originates in the field of topological inference and offers as a byproduct a robust clustering method. Thirdly, a robust Lloyd-type algorithm for clustering is constructed, using a bootstrap variant of the median-of-means strategy. This algorithm comes with a robust initialization.
Affiliations des auteurs :
Claire Brecheteau 1 ; Edouard Genetay 2 ; Timothee Mathieu 3 ; Adrien Saumard 4
@article{EP_2023_74_a8,
author = {Claire Brecheteau and Edouard Genetay and Timothee Mathieu and Adrien Saumard},
title = {Topics in robust statistical learning},
journal = {ESAIM. Proceedings},
pages = {119--136},
year = {2023},
volume = {74},
doi = {10.1051/proc/202374119},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202374119/}
}
TY - JOUR AU - Claire Brecheteau AU - Edouard Genetay AU - Timothee Mathieu AU - Adrien Saumard TI - Topics in robust statistical learning JO - ESAIM. Proceedings PY - 2023 SP - 119 EP - 136 VL - 74 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/202374119/ DO - 10.1051/proc/202374119 LA - en ID - EP_2023_74_a8 ER -
Claire Brecheteau; Edouard Genetay; Timothee Mathieu; Adrien Saumard. Topics in robust statistical learning. ESAIM. Proceedings, Tome 74 (2023), pp. 119-136. doi: 10.1051/proc/202374119
Cité par Sources :