Generative methods for sampling transition paths in molecular dynamics
ESAIM. Proceedings, Tome 73 (2023), pp. 238-256.

Voir la notice de l'article provenant de la source EDP Sciences

Molecular systems often remain trapped for long times around some local minimum of the potential energy function, before switching to another one – a behavior known as metastability. Simulating transition paths linking one metastable state to another one is difficult by direct numerical methods. In view of the promises of machine learning techniques, we explore in this work two approaches to more efficiently generate transition paths: sampling methods based on generative models such as variational autoencoders, and importance sampling methods based on reinforcement learning.
DOI : 10.1051/proc/202373238

Tony Lelièvre 1 ; Geneviève Robin 2 ; Innas Sekkat 3 ; Gabriel Stoltz 1 ; Gabriel Victorino Cardoso 4

1 CERMICS, Ecole des Ponts, Marne-la-Vallée, France & MATHERIALS team-project, Inria Paris, France
2 CNRS & Université d’Evry, France & CMAP, Ecole Polytechnique, Palaiseau, France
3 CERMICS, Ecole des Ponts, Marne-la-Vallée, France
4 CMAP, Ecole Polytechnique, Palaiseau, France & LIRYC, Université de Bordeaux, Bordeaux, France
@article{EP_2023_73_a12,
     author = {Tony Leli\`evre and Genevi\`eve Robin and Innas Sekkat and Gabriel Stoltz and Gabriel Victorino Cardoso},
     title = {Generative methods for sampling transition paths in molecular dynamics},
     journal = {ESAIM. Proceedings},
     pages = {238--256},
     publisher = {mathdoc},
     volume = {73},
     year = {2023},
     doi = {10.1051/proc/202373238},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202373238/}
}
TY  - JOUR
AU  - Tony Lelièvre
AU  - Geneviève Robin
AU  - Innas Sekkat
AU  - Gabriel Stoltz
AU  - Gabriel Victorino Cardoso
TI  - Generative methods for sampling transition paths in molecular dynamics
JO  - ESAIM. Proceedings
PY  - 2023
SP  - 238
EP  - 256
VL  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/202373238/
DO  - 10.1051/proc/202373238
LA  - en
ID  - EP_2023_73_a12
ER  - 
%0 Journal Article
%A Tony Lelièvre
%A Geneviève Robin
%A Innas Sekkat
%A Gabriel Stoltz
%A Gabriel Victorino Cardoso
%T Generative methods for sampling transition paths in molecular dynamics
%J ESAIM. Proceedings
%D 2023
%P 238-256
%V 73
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/202373238/
%R 10.1051/proc/202373238
%G en
%F EP_2023_73_a12
Tony Lelièvre; Geneviève Robin; Innas Sekkat; Gabriel Stoltz; Gabriel Victorino Cardoso. Generative methods for sampling transition paths in molecular dynamics. ESAIM. Proceedings, Tome 73 (2023), pp. 238-256. doi : 10.1051/proc/202373238. http://geodesic.mathdoc.fr/articles/10.1051/proc/202373238/

Cité par Sources :