Computation of the self-diffusion coefficient with low-rank tensor methods: application to the simulation of a cross-diffusion system
ESAIM. Proceedings, Tome 73 (2023), pp. 173-186.

Voir la notice de l'article provenant de la source EDP Sciences

Cross-diffusion systems arise as hydrodynamic limits of lattice multi-species interacting particle models. The objective of this work is to provide a numerical scheme for the simulation of the cross-diffusion system identified in [J. Quastel, Comm. Pure Appl. Math., 45 (1992), pp. 623–679]. To simulate this system, it is necessary to provide an approximation of the so-called self-diffusion coefficient matrix of the tagged particle process. Classical algorithms for the computation of this matrix are based on the estimation of the long-time limit of the average mean square displacement of the particle. In this work, as an alternative, we propose a novel approach for computing the self-diffusion coefficient using deterministic low-rank approximation techniques, as the minimum of a high-dimensional optimization problem. The computed self-diffusion coefficient is then used for the simulation of the cross-diffusion system using an implicit finite volume scheme.
DOI : 10.1051/proc/202373173

Jad Dabaghi 1, 2 ; Virginie Ehrlacher 1, 2 ; Christoph Strössner 3

1 Ecole des Ponts ParisTech, Marne-la-Vallée, France
2 INRIA Paris, France
3 Institute of Mathematics, EPF Lausanne, Switzerland
@article{EP_2023_73_a9,
     author = {Jad Dabaghi and Virginie Ehrlacher and Christoph Str\"ossner},
     title = {Computation of the self-diffusion coefficient with low-rank tensor methods: application to the simulation of a cross-diffusion system},
     journal = {ESAIM. Proceedings},
     pages = {173--186},
     publisher = {mathdoc},
     volume = {73},
     year = {2023},
     doi = {10.1051/proc/202373173},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202373173/}
}
TY  - JOUR
AU  - Jad Dabaghi
AU  - Virginie Ehrlacher
AU  - Christoph Strössner
TI  - Computation of the self-diffusion coefficient with low-rank tensor methods: application to the simulation of a cross-diffusion system
JO  - ESAIM. Proceedings
PY  - 2023
SP  - 173
EP  - 186
VL  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/202373173/
DO  - 10.1051/proc/202373173
LA  - en
ID  - EP_2023_73_a9
ER  - 
%0 Journal Article
%A Jad Dabaghi
%A Virginie Ehrlacher
%A Christoph Strössner
%T Computation of the self-diffusion coefficient with low-rank tensor methods: application to the simulation of a cross-diffusion system
%J ESAIM. Proceedings
%D 2023
%P 173-186
%V 73
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/202373173/
%R 10.1051/proc/202373173
%G en
%F EP_2023_73_a9
Jad Dabaghi; Virginie Ehrlacher; Christoph Strössner. Computation of the self-diffusion coefficient with low-rank tensor methods: application to the simulation of a cross-diffusion system. ESAIM. Proceedings, Tome 73 (2023), pp. 173-186. doi : 10.1051/proc/202373173. http://geodesic.mathdoc.fr/articles/10.1051/proc/202373173/

Cité par Sources :