Wasserstein model reduction approach for parametrized flow problems in porous media
ESAIM. Proceedings, Tome 73 (2023), pp. 28-47.

Voir la notice de l'article provenant de la source EDP Sciences

The aim of this work is to build a reduced order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in [Ehrlacher et al., Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces, ESAIM: Mathematical Modelling and Numerical Analysis (2020)], based on the use of Wasserstein barycenters [Agueh Carlier, Barycenters in the Wasserstein Space, SIAM Journal on Mathematical Analysis (2011)], to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.
DOI : 10.1051/proc/202373028

Beatrice Battisti 1 ; Tobias Blickhan 2 ; Guillaume Enchery 3 ; Virginie Ehrlacher 4 ; Damiano Lombardi 5 ; Olga Mula 6

1 Politecnico di Torino, Université de Bordeaux
2 Max-Planck-Institute for Plasma Physics & Technische Universität München
3 IFPEN
4 Ecole Nationale des Ponts et Chaussées INRIA
5 INRIA
6 Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
@article{EP_2023_73_a2,
     author = {Beatrice Battisti and Tobias Blickhan and Guillaume Enchery and Virginie Ehrlacher and Damiano Lombardi and Olga Mula},
     title = {Wasserstein model reduction approach for parametrized flow problems in porous media},
     journal = {ESAIM. Proceedings},
     pages = {28--47},
     publisher = {mathdoc},
     volume = {73},
     year = {2023},
     doi = {10.1051/proc/202373028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202373028/}
}
TY  - JOUR
AU  - Beatrice Battisti
AU  - Tobias Blickhan
AU  - Guillaume Enchery
AU  - Virginie Ehrlacher
AU  - Damiano Lombardi
AU  - Olga Mula
TI  - Wasserstein model reduction approach for parametrized flow problems in porous media
JO  - ESAIM. Proceedings
PY  - 2023
SP  - 28
EP  - 47
VL  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/202373028/
DO  - 10.1051/proc/202373028
LA  - en
ID  - EP_2023_73_a2
ER  - 
%0 Journal Article
%A Beatrice Battisti
%A Tobias Blickhan
%A Guillaume Enchery
%A Virginie Ehrlacher
%A Damiano Lombardi
%A Olga Mula
%T Wasserstein model reduction approach for parametrized flow problems in porous media
%J ESAIM. Proceedings
%D 2023
%P 28-47
%V 73
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/202373028/
%R 10.1051/proc/202373028
%G en
%F EP_2023_73_a2
Beatrice Battisti; Tobias Blickhan; Guillaume Enchery; Virginie Ehrlacher; Damiano Lombardi; Olga Mula. Wasserstein model reduction approach for parametrized flow problems in porous media. ESAIM. Proceedings, Tome 73 (2023), pp. 28-47. doi : 10.1051/proc/202373028. http://geodesic.mathdoc.fr/articles/10.1051/proc/202373028/

Cité par Sources :