Wasserstein model reduction approach for parametrized flow problems in porous media
ESAIM. Proceedings, Tome 73 (2023), pp. 28-47
Cet article a éte moissonné depuis la source EDP Sciences
The aim of this work is to build a reduced order model for parametrized porous media equations. The main challenge of this type of problems is that the Kolmogorov width of the solution manifold typically decays quite slowly and thus makes usual linear model order reduction methods inappropriate. In this work, we investigate an adaptation of the methodology proposed in [Ehrlacher et al., Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces, ESAIM: Mathematical Modelling and Numerical Analysis (2020)], based on the use of Wasserstein barycenters [Agueh Carlier, Barycenters in the Wasserstein Space, SIAM Journal on Mathematical Analysis (2011)], to the case of non-conservative problems. Numerical examples in one-dimensional test cases illustrate the advantages and limitations of this approach and suggest further research directions that we intend to explore in the future.
Affiliations des auteurs :
Beatrice Battisti 1 ; Tobias Blickhan 2 ; Guillaume Enchery 3 ; Virginie Ehrlacher 4 ; Damiano Lombardi 5 ; Olga Mula 6
@article{EP_2023_73_a2,
author = {Beatrice Battisti and Tobias Blickhan and Guillaume Enchery and Virginie Ehrlacher and Damiano Lombardi and Olga Mula},
title = {Wasserstein model reduction approach for parametrized flow problems in porous media},
journal = {ESAIM. Proceedings},
pages = {28--47},
year = {2023},
volume = {73},
doi = {10.1051/proc/202373028},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202373028/}
}
TY - JOUR AU - Beatrice Battisti AU - Tobias Blickhan AU - Guillaume Enchery AU - Virginie Ehrlacher AU - Damiano Lombardi AU - Olga Mula TI - Wasserstein model reduction approach for parametrized flow problems in porous media JO - ESAIM. Proceedings PY - 2023 SP - 28 EP - 47 VL - 73 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/202373028/ DO - 10.1051/proc/202373028 LA - en ID - EP_2023_73_a2 ER -
%0 Journal Article %A Beatrice Battisti %A Tobias Blickhan %A Guillaume Enchery %A Virginie Ehrlacher %A Damiano Lombardi %A Olga Mula %T Wasserstein model reduction approach for parametrized flow problems in porous media %J ESAIM. Proceedings %D 2023 %P 28-47 %V 73 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/202373028/ %R 10.1051/proc/202373028 %G en %F EP_2023_73_a2
Beatrice Battisti; Tobias Blickhan; Guillaume Enchery; Virginie Ehrlacher; Damiano Lombardi; Olga Mula. Wasserstein model reduction approach for parametrized flow problems in porous media. ESAIM. Proceedings, Tome 73 (2023), pp. 28-47. doi: 10.1051/proc/202373028
Cité par Sources :