Hard-congestion limit of the p-system in the BV setting
ESAIM. Proceedings, Tome 72 (2023), pp. 41-63
Cet article a éte moissonné depuis la source EDP Sciences
This note is concerned with the rigorous justification of the so-called hard congestion limit from a compressible system with singular pressure towards a mixed compressible-incompressible system modeling partially congested dynamics, for small data in the framework of BV solutions. We present a first convergence result for perturbations of a reference state represented by a single propagating large interface front, while the study of a more general framework where the reference state is constituted by multiple interface fronts is announced in the conclusion and will be the subject of a forthcoming paper. A key element of the proof is the use of a suitably weighted Glimm functional that allows to obtain precise estimates on the BV norm of the front-tracking approximation.
Affiliations des auteurs :
Fabio Ancona 1 ; Roberta Bianchini 2 ; Charlotte Perrin 3
@article{EP_2023_72_a3,
author = {Fabio Ancona and Roberta Bianchini and Charlotte Perrin},
title = {Hard-congestion limit of the p-system in the {BV} setting},
journal = {ESAIM. Proceedings},
pages = {41--63},
year = {2023},
volume = {72},
doi = {10.1051/proc/202372041},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202372041/}
}
TY - JOUR AU - Fabio Ancona AU - Roberta Bianchini AU - Charlotte Perrin TI - Hard-congestion limit of the p-system in the BV setting JO - ESAIM. Proceedings PY - 2023 SP - 41 EP - 63 VL - 72 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/202372041/ DO - 10.1051/proc/202372041 LA - en ID - EP_2023_72_a3 ER -
Fabio Ancona; Roberta Bianchini; Charlotte Perrin. Hard-congestion limit of the p-system in the BV setting. ESAIM. Proceedings, Tome 72 (2023), pp. 41-63. doi: 10.1051/proc/202372041
Cité par Sources :