Residual based a posteriori error estimation for Dirichlet boundary control problems
ESAIM. Proceedings, Tome 71 (2021), pp. 185-195
Cet article a éte moissonné depuis la source EDP Sciences
We study a residual–based a posteriori error estimate for the solution of Dirichlet boundary control problem governed by a convection diffusion equation on a two dimensional convex polygonal domain, using the local discontinuous Galerkin (LDG) method with upwinding for the convection term. With the usage of LDG method, the control variable naturally exists in the variational form due to its mixed finite element structure. We also demonstrate the application of our a posteriori error estimator for the adaptive solution of these optimal control problems.
@article{EP_2021_71_a17,
author = {Hamdullah Y\"ucel},
title = {Residual based a posteriori error estimation for {Dirichlet} boundary control problems},
journal = {ESAIM. Proceedings},
pages = {185--195},
year = {2021},
volume = {71},
doi = {10.1051/proc/202171185},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202171185/}
}
TY - JOUR AU - Hamdullah Yücel TI - Residual based a posteriori error estimation for Dirichlet boundary control problems JO - ESAIM. Proceedings PY - 2021 SP - 185 EP - 195 VL - 71 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/202171185/ DO - 10.1051/proc/202171185 LA - en ID - EP_2021_71_a17 ER -
Hamdullah Yücel. Residual based a posteriori error estimation for Dirichlet boundary control problems. ESAIM. Proceedings, Tome 71 (2021), pp. 185-195. doi: 10.1051/proc/202171185
Cité par Sources :