Residual based a posteriori error estimation for Dirichlet boundary control problems
ESAIM. Proceedings, Tome 71 (2021), pp. 185-195.

Voir la notice de l'article provenant de la source EDP Sciences

We study a residual–based a posteriori error estimate for the solution of Dirichlet boundary control problem governed by a convection diffusion equation on a two dimensional convex polygonal domain, using the local discontinuous Galerkin (LDG) method with upwinding for the convection term. With the usage of LDG method, the control variable naturally exists in the variational form due to its mixed finite element structure. We also demonstrate the application of our a posteriori error estimator for the adaptive solution of these optimal control problems.
DOI : 10.1051/proc/202171185

Hamdullah Yücel 1

1 Institute of Applied Mathematics, Middle East Technical University, 06800 Ankara, Turkey
@article{EP_2021_71_a17,
     author = {Hamdullah Y\"ucel},
     title = {Residual based a posteriori error estimation for {Dirichlet} boundary control problems},
     journal = {ESAIM. Proceedings},
     pages = {185--195},
     publisher = {mathdoc},
     volume = {71},
     year = {2021},
     doi = {10.1051/proc/202171185},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202171185/}
}
TY  - JOUR
AU  - Hamdullah Yücel
TI  - Residual based a posteriori error estimation for Dirichlet boundary control problems
JO  - ESAIM. Proceedings
PY  - 2021
SP  - 185
EP  - 195
VL  - 71
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/202171185/
DO  - 10.1051/proc/202171185
LA  - en
ID  - EP_2021_71_a17
ER  - 
%0 Journal Article
%A Hamdullah Yücel
%T Residual based a posteriori error estimation for Dirichlet boundary control problems
%J ESAIM. Proceedings
%D 2021
%P 185-195
%V 71
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/202171185/
%R 10.1051/proc/202171185
%G en
%F EP_2021_71_a17
Hamdullah Yücel. Residual based a posteriori error estimation for Dirichlet boundary control problems. ESAIM. Proceedings, Tome 71 (2021), pp. 185-195. doi : 10.1051/proc/202171185. http://geodesic.mathdoc.fr/articles/10.1051/proc/202171185/

Cité par Sources :