Multilevel augmented Lagrangian solvers for overconstrained contact formulations
ESAIM. Proceedings, Tome 71 (2021), pp. 175-184
Cet article a éte moissonné depuis la source EDP Sciences
Multigrid methods for two-body contact problems are mostly based on special mortar discretizations, nonlinear Gauss-Seidel solvers, and solution-adapted coarse grid spaces. Their high computational efficiency comes at the cost of a complex implementation and a nonsymmetric master-slave discretization of the nonpenetration condition. Here we investigate an alternative symmetric and overconstrained segment-to-segment contact formulation that allows for a simple implementation based on standard multigrid and a symmetric treatment of contact boundaries, but leads to nonunique multipliers. For the solution of the arising quadratic programs, we propose augmented Lagrangian multigrid with overlapping block Gauss-Seidel smoothers. Approximation and convergence properties are studied numerically at standard test problems.
Affiliations des auteurs :
Rolf Krause 1 ; Martin Weiser 2
@article{EP_2021_71_a16,
author = {Rolf Krause and Martin Weiser},
title = {Multilevel augmented {Lagrangian} solvers for overconstrained contact formulations},
journal = {ESAIM. Proceedings},
pages = {175--184},
year = {2021},
volume = {71},
doi = {10.1051/proc/202171175},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202171175/}
}
TY - JOUR AU - Rolf Krause AU - Martin Weiser TI - Multilevel augmented Lagrangian solvers for overconstrained contact formulations JO - ESAIM. Proceedings PY - 2021 SP - 175 EP - 184 VL - 71 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/202171175/ DO - 10.1051/proc/202171175 LA - en ID - EP_2021_71_a16 ER -
Rolf Krause; Martin Weiser. Multilevel augmented Lagrangian solvers for overconstrained contact formulations. ESAIM. Proceedings, Tome 71 (2021), pp. 175-184. doi: 10.1051/proc/202171175
Cité par Sources :